Event-triggered static output feedback control of discrete time piecewise-affine systems
Kybernetika (2021)
- Volume: 57, Issue: 3, page 513-533
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topXue, Zhuyun, and Shen, Mouquan. "Event-triggered $H_\infty $ static output feedback control of discrete time piecewise-affine systems." Kybernetika 57.3 (2021): 513-533. <http://eudml.org/doc/297523>.
@article{Xue2021,
abstract = {This paper is concerned with the problem of $H_\infty $ event-triggered output feedback control of discrete time piecewise-affine systems. Relying on system outputs, a piecewise-affine triggering condition is constructed to release communication burden. Resorting to piecewise Lyapunov functional and robust control techniques, sufficient conditions are built to ensure the closed-loop systems to be asymptotically stable with the prescribed $H_\infty $ performance. By utilizing a separation strategy, the static output feedback controller is solved by means of linear matrix inequalities. The validity of the proposed method are demonstrated by numerical examples.},
author = {Xue, Zhuyun, Shen, Mouquan},
journal = {Kybernetika},
keywords = {event-triggered control; output feedback control; linear matrix inequality},
language = {eng},
number = {3},
pages = {513-533},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Event-triggered $H_\infty $ static output feedback control of discrete time piecewise-affine systems},
url = {http://eudml.org/doc/297523},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Xue, Zhuyun
AU - Shen, Mouquan
TI - Event-triggered $H_\infty $ static output feedback control of discrete time piecewise-affine systems
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 3
SP - 513
EP - 533
AB - This paper is concerned with the problem of $H_\infty $ event-triggered output feedback control of discrete time piecewise-affine systems. Relying on system outputs, a piecewise-affine triggering condition is constructed to release communication burden. Resorting to piecewise Lyapunov functional and robust control techniques, sufficient conditions are built to ensure the closed-loop systems to be asymptotically stable with the prescribed $H_\infty $ performance. By utilizing a separation strategy, the static output feedback controller is solved by means of linear matrix inequalities. The validity of the proposed method are demonstrated by numerical examples.
LA - eng
KW - event-triggered control; output feedback control; linear matrix inequality
UR - http://eudml.org/doc/297523
ER -
References
top- Anders, R., Mikael, J., , IEEE Trans. Automat. Control (1998), 2005-2010. DOI
- Antoine, G., , IEEE Trans. Automat. Control 60 (2015), 1992-1997. DOI
- Bengtsson, G., Lindahl, S., , Automatica 10 (1974), 15-30. DOI
- Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory., SIAM 1994. Zbl0816.93004
- Breschi, V., Piga, D., Bemporad, A., , Automatica 73 (2016), 155-162. DOI
- Calise, A. J., Hovakimyan, N., Idan, M., , Automatica 37 (2001), 1201-1211. DOI
- Chang, X., Yang, G., , IEEE Trans. Automat. Control 59 (2014), 1355-1359. DOI
- Chang, X., Zhang, L., Park, J. H., , Fuzzy Sets Systems 273 (2015), 87-104. DOI
- Chao, D., Che, W., Shi, P., , IEEE Trans. Neural Networks Learning Systems 31 (2019), 4831-4841. DOI
- Chao, D., Che, W., Wu, Z., , IEEE Trans. Cybernet. xx (2020), 1812-1821. DOI
- Eghbal, N., Pariz, N., Karimpour, A., , J. Math. Anal. Appl. 399 (2013), 586-593. DOI
- Heemels, W., Donkers, M., , Automatica 49 (2013), 698-711. DOI
- Iervolino, R., Tangredi, D., Vasca, F., , Automatica 81 (2017), 22-29. DOI
- Kantner, M., , Proc. 1997 American Control Conference, IEEE 2 (1997), 1241-1245. DOI
- Khashooei, A., Antunes, B., Heemels, W., , IEEE Trans. Automat. Control 62 (2017), 3646-3652. DOI
- Liu, Y., Yang, G., Li, X., , Neurocomputing 267 (2017), 564-571. DOI
- Ma, Y., Wu, W., Cui, B., , Int. J. Systems Sci. 49 (2018), 3377-3389. DOI
- Ma, Y., Wu, W., Gorges, D., Cui, B., , Nonlinear Dynamics 95 (2018), 2353-2365. DOI
- Mohammed, C., Guerra, T. M., , IEEE Trans. Fuzzy Systems 20 (2012), 1160-1165. DOI
- Palmieri, G., Baric, M., Glielmo, L., Borrelli, F., , Vehicle System Dynamics 50 (2012), 861-882. DOI
- Perez, J., Llopis, R. S., , Int. J. Control 91 (2018), 1567-1587. DOI
- Ren, W., Yang, H., Jiang, B., , Int. J. Control Automat. Systems 15 (2017), 547-556. DOI
- Shen, J., Lam, J., , Automatica 63 (2016), 248-253. DOI
- Song, X., Zhou, S., Zhang, B., , Nonlinear Analysis: Hybrid Systems 2 (2008), 1264-1274. DOI
- Vaezi, M., Izadian, A., , IEEE Trans. Control Systems Technol. 23 (2015), 2077-2086. DOI
- Wang, X., Deng, Z., Ma, S., Du, X., , Kybernetika 53 (2017), 179-194. DOI
- Wei, Y., Qiu, J., Karimi, H. R., , Automatica 109 (2019) 108481. DOI
- Wei, Y., Qiu, J., Lam, H., Wu, L., , IEEE Trans. Fuzzy Systems 25 (2016), 569-583. DOI
- Durrant-Whyte, H., , J. Systems Control Engrg. 219 (2005), 77-94. DOI
- Xie, L., , Int. J. Control 63 (1996), 741-750. DOI
- Yan, S., Zhang, G., Li, T., Shen, M., Li, L., , Circuits 37 (2018), 553-568. DOI
- Yang, R., Zheng, W., Yu, Y., , Automatica 114 (2020), 108813. DOI
- Zhang, H., and, Y. Shi, Mehr, A. S., , IEEE Trans. Industr. Electronics 25 (2011), 5396-5405. DOI
- Zhang, P., Wang, J., , Kybernetika 52 (2016), 589-606. DOI
- Zhu, Y., Zhong, Z., Basin, M. V., Zhou, D., , IEEE Trans. Automat. Control 63 (2018), 3456-3463. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.