The Mordell-Weil bases for the elliptic curve
Sudhansu Sekhar Rout; Abhishek Juyal
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1133-1147
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRout, Sudhansu Sekhar, and Juyal, Abhishek. "The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$." Czechoslovak Mathematical Journal 71.4 (2021): 1133-1147. <http://eudml.org/doc/297526>.
@article{Rout2021,
abstract = {Let $D_m$ be an elliptic curve over $\mathbb \{Q\}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_\{-1\}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb \{Q\})$ under certain conditions described explicitly.},
author = {Rout, Sudhansu Sekhar, Juyal, Abhishek},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic curve; Mordell-Weil group; canonical height},
language = {eng},
number = {4},
pages = {1133-1147},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$},
url = {http://eudml.org/doc/297526},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Rout, Sudhansu Sekhar
AU - Juyal, Abhishek
TI - The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1133
EP - 1147
AB - Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly.
LA - eng
KW - elliptic curve; Mordell-Weil group; canonical height
UR - http://eudml.org/doc/297526
ER -
References
top- Antoniewicz, A., On a family of elliptic curves, Univ. Iagell. Acta Math. 43 (2005), 21-32. (2005) Zbl1116.11036MR2331469
- Brown, E., Myers, B. T., 10.2307/3072428, Am. Math. Mon. 109 (2002), 639-649. (2002) Zbl1083.11037MR1917222DOI10.2307/3072428
- Cannon, J., Bosma, W., Fieker, C., (eds.), A. Steel, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Sydney (2006). (2006)
- Eikenberg, E. V., Rational Points on Some Families of Elliptic Curves: Ph.D. Thesis, University of Maryland, College Park (2004). (2004) MR2705712
- Fujita, Y., 10.1016/j.jnt.2012.10.011, J. Number Theory 133 (2013), 1645-1662. (2013) Zbl1295.11060MR3007126DOI10.1016/j.jnt.2012.10.011
- Fujita, Y., Generators for congruent number curves of ranks at least two and three, J. Ramanujan Math. Soc. 29 (2014), 307-319. (2014) Zbl1316.11043MR3265063
- Fujita, Y., Nara, T., 10.1016/j.jnt.2011.09.003, J. Number Theory 132 (2012), 448-466. (2012) Zbl1308.11059MR2875349DOI10.1016/j.jnt.2011.09.003
- Fujita, Y., Nara, T., 10.5486/PMD.2018.7719, Publ. Math. 92 (2018), 79-99. (2018) Zbl1413.11081MR3764079DOI10.5486/PMD.2018.7719
- Fujita, Y., Terai, N., 10.5802/jtnb.769, J. Théor. Nombres Bordx. 23 (2011), 403-416. (2011) Zbl1228.11081MR2817937DOI10.5802/jtnb.769
- Juyal, A., Kumar, S. D., 10.1007/s12044-018-0433-0, Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. (2018) Zbl1448.11104MR3869527DOI10.1007/s12044-018-0433-0
- Oguiso, K., Shioda, T., The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Pauli 40 (1991), 83-99. (1991) Zbl0757.14011MR1104782
- Shioda, T., On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240. (1990) Zbl0725.14017MR1081832
- Siksek, S., 10.1216/rmjm/1181072159, Rocky Mt. J. Math. 25 (1995), 1501-1538. (1995) Zbl0852.11028MR1371352DOI10.1216/rmjm/1181072159
- Silverman, J. H., 10.1090/S0025-5718-1988-0942161-4, Math. Comput. 51 (1988), 339-358. (1988) Zbl0656.14016MR942161DOI10.1090/S0025-5718-1988-0942161-4
- Silverman, J. H., 10.1007/978-1-4612-0851-8, Graduate Texts in Mathematics 151. Springer, New York (1994). (1994) Zbl0911.14015MR1312368DOI10.1007/978-1-4612-0851-8
- Silverman, J. H., 10.1007/978-0-387-09494-6, Graduate Texts in Mathematics 106. Springer, New York (2009). (2009) Zbl1194.11005MR2514094DOI10.1007/978-0-387-09494-6
- Tadić, P., 10.3336/gm.47.1.06, Glas. Mat., III. Ser. 47 (2012), 81-93. (2012) Zbl1254.11057MR2942776DOI10.3336/gm.47.1.06
- Tadić, P., The rank of certain subfamilies of the elliptic curve , Ann. Math. Inform. 40 (2012), 145-153. (2012) Zbl1274.11109MR3005123
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.