The Mordell-Weil bases for the elliptic curve y 2 = x 3 - m 2 x + m 2

Sudhansu Sekhar Rout; Abhishek Juyal

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 1133-1147
  • ISSN: 0011-4642

Abstract

top
Let D m be an elliptic curve over of the form y 2 = x 3 - m 2 x + m 2 , where m is an integer. In this paper we prove that the two points P - 1 = ( - m , m ) and P 0 = ( 0 , m ) on D m can be extended to a basis for D m ( ) under certain conditions described explicitly.

How to cite

top

Rout, Sudhansu Sekhar, and Juyal, Abhishek. "The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$." Czechoslovak Mathematical Journal 71.4 (2021): 1133-1147. <http://eudml.org/doc/297526>.

@article{Rout2021,
abstract = {Let $D_m$ be an elliptic curve over $\mathbb \{Q\}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_\{-1\}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb \{Q\})$ under certain conditions described explicitly.},
author = {Rout, Sudhansu Sekhar, Juyal, Abhishek},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic curve; Mordell-Weil group; canonical height},
language = {eng},
number = {4},
pages = {1133-1147},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$},
url = {http://eudml.org/doc/297526},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Rout, Sudhansu Sekhar
AU - Juyal, Abhishek
TI - The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1133
EP - 1147
AB - Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly.
LA - eng
KW - elliptic curve; Mordell-Weil group; canonical height
UR - http://eudml.org/doc/297526
ER -

References

top
  1. Antoniewicz, A., On a family of elliptic curves, Univ. Iagell. Acta Math. 43 (2005), 21-32. (2005) Zbl1116.11036MR2331469
  2. Brown, E., Myers, B. T., 10.2307/3072428, Am. Math. Mon. 109 (2002), 639-649. (2002) Zbl1083.11037MR1917222DOI10.2307/3072428
  3. Cannon, J., Bosma, W., Fieker, C., (eds.), A. Steel, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Sydney (2006). (2006) 
  4. Eikenberg, E. V., Rational Points on Some Families of Elliptic Curves: Ph.D. Thesis, University of Maryland, College Park (2004). (2004) MR2705712
  5. Fujita, Y., 10.1016/j.jnt.2012.10.011, J. Number Theory 133 (2013), 1645-1662. (2013) Zbl1295.11060MR3007126DOI10.1016/j.jnt.2012.10.011
  6. Fujita, Y., Generators for congruent number curves of ranks at least two and three, J. Ramanujan Math. Soc. 29 (2014), 307-319. (2014) Zbl1316.11043MR3265063
  7. Fujita, Y., Nara, T., 10.1016/j.jnt.2011.09.003, J. Number Theory 132 (2012), 448-466. (2012) Zbl1308.11059MR2875349DOI10.1016/j.jnt.2011.09.003
  8. Fujita, Y., Nara, T., 10.5486/PMD.2018.7719, Publ. Math. 92 (2018), 79-99. (2018) Zbl1413.11081MR3764079DOI10.5486/PMD.2018.7719
  9. Fujita, Y., Terai, N., 10.5802/jtnb.769, J. Théor. Nombres Bordx. 23 (2011), 403-416. (2011) Zbl1228.11081MR2817937DOI10.5802/jtnb.769
  10. Juyal, A., Kumar, S. D., 10.1007/s12044-018-0433-0, Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. (2018) Zbl1448.11104MR3869527DOI10.1007/s12044-018-0433-0
  11. Oguiso, K., Shioda, T., The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Pauli 40 (1991), 83-99. (1991) Zbl0757.14011MR1104782
  12. Shioda, T., On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240. (1990) Zbl0725.14017MR1081832
  13. Siksek, S., 10.1216/rmjm/1181072159, Rocky Mt. J. Math. 25 (1995), 1501-1538. (1995) Zbl0852.11028MR1371352DOI10.1216/rmjm/1181072159
  14. Silverman, J. H., 10.1090/S0025-5718-1988-0942161-4, Math. Comput. 51 (1988), 339-358. (1988) Zbl0656.14016MR942161DOI10.1090/S0025-5718-1988-0942161-4
  15. Silverman, J. H., 10.1007/978-1-4612-0851-8, Graduate Texts in Mathematics 151. Springer, New York (1994). (1994) Zbl0911.14015MR1312368DOI10.1007/978-1-4612-0851-8
  16. Silverman, J. H., 10.1007/978-0-387-09494-6, Graduate Texts in Mathematics 106. Springer, New York (2009). (2009) Zbl1194.11005MR2514094DOI10.1007/978-0-387-09494-6
  17. Tadić, P., 10.3336/gm.47.1.06, Glas. Mat., III. Ser. 47 (2012), 81-93. (2012) Zbl1254.11057MR2942776DOI10.3336/gm.47.1.06
  18. Tadić, P., The rank of certain subfamilies of the elliptic curve Y 2 = X 3 - X + T 2 , Ann. Math. Inform. 40 (2012), 145-153. (2012) Zbl1274.11109MR3005123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.