Weakly fuzzy topological entropy

B M Uzzal Afsan

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 2, page 221-236
  • ISSN: 0862-7959

Abstract

top
In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping ψ : ( X , τ ) ( X , τ ) , where ( X , τ ) is compact, is equal to the weakly fuzzy topological entropy of ψ : ( X , ω ( τ ) ) ( X , ω ( τ ) ) . We have also established an example that shows that the fuzzy topological entropy of İ. Tok (2005) cannot give such a bridge result to the topological entropy of Adler et al. (1965). Moreover, our definition of the weakly fuzzy topological entropy can be applied to find the topological entropy (namely weakly fuzzy topological entropy h w ( ψ ) ) of the mapping ψ : X X (where X is either compact or weakly fuzzy compact), whereas the topological entropy h a ( ψ ) of Adler does not exist for the mapping ψ : X X (where X is non-compact weakly fuzzy compact). Finally, a product theorem for the weakly fuzzy topological entropy has been established.

How to cite

top

Afsan, B M Uzzal. "Weakly fuzzy topological entropy." Mathematica Bohemica 147.2 (2022): 221-236. <http://eudml.org/doc/297530>.

@article{Afsan2022,
abstract = {In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping $\psi \colon (X,\tau )\rightarrow (X,\tau )$, where $(X,\tau )$ is compact, is equal to the weakly fuzzy topological entropy of $\psi \colon (X,\omega (\tau ))\rightarrow (X,\omega (\tau ))$. We have also established an example that shows that the fuzzy topological entropy of İ. Tok (2005) cannot give such a bridge result to the topological entropy of Adler et al. (1965). Moreover, our definition of the weakly fuzzy topological entropy can be applied to find the topological entropy (namely weakly fuzzy topological entropy $h_w(\psi )$) of the mapping $\psi \colon X\rightarrow X$ (where $X$ is either compact or weakly fuzzy compact), whereas the topological entropy $h_a(\psi )$ of Adler does not exist for the mapping $\psi \colon X\rightarrow X$ (where $X$ is non-compact weakly fuzzy compact). Finally, a product theorem for the weakly fuzzy topological entropy has been established.},
author = {Afsan, B M Uzzal},
journal = {Mathematica Bohemica},
keywords = {weakly fuzzy compact; weakly fuzzy compact topological dynamical system; weakly fuzzy topological entropy},
language = {eng},
number = {2},
pages = {221-236},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weakly fuzzy topological entropy},
url = {http://eudml.org/doc/297530},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Afsan, B M Uzzal
TI - Weakly fuzzy topological entropy
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 221
EP - 236
AB - In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping $\psi \colon (X,\tau )\rightarrow (X,\tau )$, where $(X,\tau )$ is compact, is equal to the weakly fuzzy topological entropy of $\psi \colon (X,\omega (\tau ))\rightarrow (X,\omega (\tau ))$. We have also established an example that shows that the fuzzy topological entropy of İ. Tok (2005) cannot give such a bridge result to the topological entropy of Adler et al. (1965). Moreover, our definition of the weakly fuzzy topological entropy can be applied to find the topological entropy (namely weakly fuzzy topological entropy $h_w(\psi )$) of the mapping $\psi \colon X\rightarrow X$ (where $X$ is either compact or weakly fuzzy compact), whereas the topological entropy $h_a(\psi )$ of Adler does not exist for the mapping $\psi \colon X\rightarrow X$ (where $X$ is non-compact weakly fuzzy compact). Finally, a product theorem for the weakly fuzzy topological entropy has been established.
LA - eng
KW - weakly fuzzy compact; weakly fuzzy compact topological dynamical system; weakly fuzzy topological entropy
UR - http://eudml.org/doc/297530
ER -

References

top
  1. Adler, R. L., Konheim, A. G., McAndrew, M. H., 10.1090/S0002-9947-1965-0175106-9, Trans. Am. Math. Soc. 114 (1965), 309-319. (1965) Zbl0127.13102MR175106DOI10.1090/S0002-9947-1965-0175106-9
  2. Afsan, B M U., Basu, C. K., 10.1016/j.aml.2011.05.037, Appl. Math. Lett. 24 (2011), 2030-2033. (2011) Zbl1269.54003MR2826120DOI10.1016/j.aml.2011.05.037
  3. Bowen, R., Topological entropy and axiom A , Global Analysis, Proc. Sympos. Pure Math. 14 (1970), 23-42. (1970) Zbl0207.54402MR0262459
  4. Bowen, R., 10.1090/S0002-9947-1973-0338317-X, Trans. Am. Math. Soc. 184 (1973), 125-136. (1973) Zbl0274.54030MR0338317DOI10.1090/S0002-9947-1973-0338317-X
  5. Cánovas, J. S., Kupka, J., 10.1016/j.fss.2010.10.020, Fuzzy Sets Syst. 165 (2011), 37-49. (2011) Zbl1252.37018MR2754584DOI10.1016/j.fss.2010.10.020
  6. Cánovas, J. S., Rodríguez, J. M., 10.1016/j.topol.2005.01.006, Topology Appl. 153 (2005), 735-746. (2005) Zbl1085.37010MR2201485DOI10.1016/j.topol.2005.01.006
  7. Pe{ñ}a, J. S. Cánovas, López, G. Soler, 10.1016/j.chaos.2005.08.173, Chaos Solitons Fractals 28 (2006), 979-982. (2006) Zbl1097.54036MR2212786DOI10.1016/j.chaos.2005.08.173
  8. Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
  9. Dumitrescu, D., On fuzzy partitions, Prepr., "Babes-Bolyai" Univ., Fac. Math., Res. Semin. 2 (1983), 57-60. (1983) Zbl0529.62048MR0750491
  10. Dumitrescu, D., 10.1016/0165-0114(93)90129-6, Fuzzy Sets Syst. 55 (1993), 169-177. (1993) Zbl0818.28008MR1215137DOI10.1016/0165-0114(93)90129-6
  11. Dumitrescu, D., 10.1006/jmaa.1993.1220, J. Math. Anal. Appl. 176 (1993), 359-373. (1993) Zbl0782.28012MR1224152DOI10.1006/jmaa.1993.1220
  12. Dumitrescu, D., 10.1016/0165-0114(94)00245-3, Fuzzy Sets Syst. 70 (1995), 45-57. (1995) Zbl0876.28029MR1323286DOI10.1016/0165-0114(94)00245-3
  13. Dumitrescu, D., Barbu, M., Fuzzy entropy and processes, Prepr., "Babes-Bolyai" Univ., Fac. Math., Res. Semin. 6 (1985), 71-74. (1985) MR0842212
  14. Goodwyn, L. W., 10.1090/S0002-9939-1969-0247030-3, Proc. Am. Math. Soc. 23 (1969), 679-688. (1969) Zbl0186.09804MR0247030DOI10.1090/S0002-9939-1969-0247030-3
  15. Goodwyn, L. W., 10.2307/2374626, Am. J. Math. 94 (1972), 366-388. (1972) Zbl0249.54021MR0310191DOI10.2307/2374626
  16. Kwietniak, D., Oprocha, P., 10.1016/j.chaos.2005.12.033, Chaos Solitons Fractals 33 (2007), 76-86. (2007) Zbl1152.37306MR2301847DOI10.1016/j.chaos.2005.12.033
  17. Liu, L., Wang, Y., Wei, G., 10.1016/j.chaos.2007.04.008, Chaos Solitons Fractals 39 (2009), 417-427. (2009) Zbl1197.37015MR2504577DOI10.1016/j.chaos.2007.04.008
  18. Lowen, R., 10.1016/0022-247X(76)90029-9, J. Math. Anal. Appl. 56 (1976), 621-633. (1976) Zbl0342.54003MR0440482DOI10.1016/0022-247X(76)90029-9
  19. Lowen, R., 10.1016/0022-247X(77)90223-2, J. Math. Anal. Appl. 58 (1977), 11-21. (1977) Zbl0347.54002MR0440483DOI10.1016/0022-247X(77)90223-2
  20. Markechová, D., The entropy of fuzzy dynamical systems, BUSEFAL 38 (1989), 38-41. (1989) 
  21. Markechová, D., Isomorphism and conjugation of fuzzy dynamical systems, BUSEFAL 38 (1989), 94-101. (1989) Zbl0677.93033
  22. Markechová, D., 10.1016/0165-0114(92)90350-D, Fuzzy Sets Syst. 48 (1992), 351-363. (1992) Zbl0754.60005MR1178175DOI10.1016/0165-0114(92)90350-D
  23. Markechová, D., 10.1016/0165-0114(94)90009-4, Fuzzy Sets Syst. 64 (1994), 87-90. (1994) Zbl0845.93054MR1281288DOI10.1016/0165-0114(94)90009-4
  24. Pu, P.-M., Liu, Y.-M., 10.1016/0022-247X(80)90048-7, J. Math. Anal. Appl. 76 (1980), 571-599. (1980) Zbl0447.54006MR0587361DOI10.1016/0022-247X(80)90048-7
  25. Pu, P.-M., Liu, Y.-M., 10.1016/0022-247X(80)90258-9, J. Math. Anal. Appl. 77 (1980), 20-37. (1980) Zbl0447.54007MR0591259DOI10.1016/0022-247X(80)90258-9
  26. Riečan, B., Markechová, D., 10.1016/S0165-0114(96)00266-7, Fuzzy Sets Syst. 96 (1998), 191-199. (1998) Zbl0926.94012MR1614814DOI10.1016/S0165-0114(96)00266-7
  27. Thomas, R. F., 10.2140/pjm.1990.141.391, Pac. J. Math. 141 (1990), 391-400. (1990) Zbl0661.58026MR1035451DOI10.2140/pjm.1990.141.391
  28. Tok, I., On the fuzzy topological entropy function, JFS 28 (2005), 74-80. (2005) 
  29. Walters, P., 10.1007/978-1-4612-5775-2, Graduate Texts in Mathematics 79. Springer, New York (1982). (1982) Zbl0475.28009MR0648108DOI10.1007/978-1-4612-5775-2
  30. Zadeh, L. A., 10.1016/S0019-9958(65)90241-X, Inf. Control 8 (1965), 338-353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.