Weakly fuzzy topological entropy
Mathematica Bohemica (2022)
- Volume: 147, Issue: 2, page 221-236
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAfsan, B M Uzzal. "Weakly fuzzy topological entropy." Mathematica Bohemica 147.2 (2022): 221-236. <http://eudml.org/doc/297530>.
@article{Afsan2022,
abstract = {In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping $\psi \colon (X,\tau )\rightarrow (X,\tau )$, where $(X,\tau )$ is compact, is equal to the weakly fuzzy topological entropy of $\psi \colon (X,\omega (\tau ))\rightarrow (X,\omega (\tau ))$. We have also established an example that shows that the fuzzy topological entropy of İ. Tok (2005) cannot give such a bridge result to the topological entropy of Adler et al. (1965). Moreover, our definition of the weakly fuzzy topological entropy can be applied to find the topological entropy (namely weakly fuzzy topological entropy $h_w(\psi )$) of the mapping $\psi \colon X\rightarrow X$ (where $X$ is either compact or weakly fuzzy compact), whereas the topological entropy $h_a(\psi )$ of Adler does not exist for the mapping $\psi \colon X\rightarrow X$ (where $X$ is non-compact weakly fuzzy compact). Finally, a product theorem for the weakly fuzzy topological entropy has been established.},
author = {Afsan, B M Uzzal},
journal = {Mathematica Bohemica},
keywords = {weakly fuzzy compact; weakly fuzzy compact topological dynamical system; weakly fuzzy topological entropy},
language = {eng},
number = {2},
pages = {221-236},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weakly fuzzy topological entropy},
url = {http://eudml.org/doc/297530},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Afsan, B M Uzzal
TI - Weakly fuzzy topological entropy
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 221
EP - 236
AB - In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping $\psi \colon (X,\tau )\rightarrow (X,\tau )$, where $(X,\tau )$ is compact, is equal to the weakly fuzzy topological entropy of $\psi \colon (X,\omega (\tau ))\rightarrow (X,\omega (\tau ))$. We have also established an example that shows that the fuzzy topological entropy of İ. Tok (2005) cannot give such a bridge result to the topological entropy of Adler et al. (1965). Moreover, our definition of the weakly fuzzy topological entropy can be applied to find the topological entropy (namely weakly fuzzy topological entropy $h_w(\psi )$) of the mapping $\psi \colon X\rightarrow X$ (where $X$ is either compact or weakly fuzzy compact), whereas the topological entropy $h_a(\psi )$ of Adler does not exist for the mapping $\psi \colon X\rightarrow X$ (where $X$ is non-compact weakly fuzzy compact). Finally, a product theorem for the weakly fuzzy topological entropy has been established.
LA - eng
KW - weakly fuzzy compact; weakly fuzzy compact topological dynamical system; weakly fuzzy topological entropy
UR - http://eudml.org/doc/297530
ER -
References
top- Adler, R. L., Konheim, A. G., McAndrew, M. H., 10.1090/S0002-9947-1965-0175106-9, Trans. Am. Math. Soc. 114 (1965), 309-319. (1965) Zbl0127.13102MR175106DOI10.1090/S0002-9947-1965-0175106-9
- Afsan, B M U., Basu, C. K., 10.1016/j.aml.2011.05.037, Appl. Math. Lett. 24 (2011), 2030-2033. (2011) Zbl1269.54003MR2826120DOI10.1016/j.aml.2011.05.037
- Bowen, R., Topological entropy and axiom , Global Analysis, Proc. Sympos. Pure Math. 14 (1970), 23-42. (1970) Zbl0207.54402MR0262459
- Bowen, R., 10.1090/S0002-9947-1973-0338317-X, Trans. Am. Math. Soc. 184 (1973), 125-136. (1973) Zbl0274.54030MR0338317DOI10.1090/S0002-9947-1973-0338317-X
- Cánovas, J. S., Kupka, J., 10.1016/j.fss.2010.10.020, Fuzzy Sets Syst. 165 (2011), 37-49. (2011) Zbl1252.37018MR2754584DOI10.1016/j.fss.2010.10.020
- Cánovas, J. S., Rodríguez, J. M., 10.1016/j.topol.2005.01.006, Topology Appl. 153 (2005), 735-746. (2005) Zbl1085.37010MR2201485DOI10.1016/j.topol.2005.01.006
- Pe{ñ}a, J. S. Cánovas, López, G. Soler, 10.1016/j.chaos.2005.08.173, Chaos Solitons Fractals 28 (2006), 979-982. (2006) Zbl1097.54036MR2212786DOI10.1016/j.chaos.2005.08.173
- Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
- Dumitrescu, D., On fuzzy partitions, Prepr., "Babes-Bolyai" Univ., Fac. Math., Res. Semin. 2 (1983), 57-60. (1983) Zbl0529.62048MR0750491
- Dumitrescu, D., 10.1016/0165-0114(93)90129-6, Fuzzy Sets Syst. 55 (1993), 169-177. (1993) Zbl0818.28008MR1215137DOI10.1016/0165-0114(93)90129-6
- Dumitrescu, D., 10.1006/jmaa.1993.1220, J. Math. Anal. Appl. 176 (1993), 359-373. (1993) Zbl0782.28012MR1224152DOI10.1006/jmaa.1993.1220
- Dumitrescu, D., 10.1016/0165-0114(94)00245-3, Fuzzy Sets Syst. 70 (1995), 45-57. (1995) Zbl0876.28029MR1323286DOI10.1016/0165-0114(94)00245-3
- Dumitrescu, D., Barbu, M., Fuzzy entropy and processes, Prepr., "Babes-Bolyai" Univ., Fac. Math., Res. Semin. 6 (1985), 71-74. (1985) MR0842212
- Goodwyn, L. W., 10.1090/S0002-9939-1969-0247030-3, Proc. Am. Math. Soc. 23 (1969), 679-688. (1969) Zbl0186.09804MR0247030DOI10.1090/S0002-9939-1969-0247030-3
- Goodwyn, L. W., 10.2307/2374626, Am. J. Math. 94 (1972), 366-388. (1972) Zbl0249.54021MR0310191DOI10.2307/2374626
- Kwietniak, D., Oprocha, P., 10.1016/j.chaos.2005.12.033, Chaos Solitons Fractals 33 (2007), 76-86. (2007) Zbl1152.37306MR2301847DOI10.1016/j.chaos.2005.12.033
- Liu, L., Wang, Y., Wei, G., 10.1016/j.chaos.2007.04.008, Chaos Solitons Fractals 39 (2009), 417-427. (2009) Zbl1197.37015MR2504577DOI10.1016/j.chaos.2007.04.008
- Lowen, R., 10.1016/0022-247X(76)90029-9, J. Math. Anal. Appl. 56 (1976), 621-633. (1976) Zbl0342.54003MR0440482DOI10.1016/0022-247X(76)90029-9
- Lowen, R., 10.1016/0022-247X(77)90223-2, J. Math. Anal. Appl. 58 (1977), 11-21. (1977) Zbl0347.54002MR0440483DOI10.1016/0022-247X(77)90223-2
- Markechová, D., The entropy of fuzzy dynamical systems, BUSEFAL 38 (1989), 38-41. (1989)
- Markechová, D., Isomorphism and conjugation of fuzzy dynamical systems, BUSEFAL 38 (1989), 94-101. (1989) Zbl0677.93033
- Markechová, D., 10.1016/0165-0114(92)90350-D, Fuzzy Sets Syst. 48 (1992), 351-363. (1992) Zbl0754.60005MR1178175DOI10.1016/0165-0114(92)90350-D
- Markechová, D., 10.1016/0165-0114(94)90009-4, Fuzzy Sets Syst. 64 (1994), 87-90. (1994) Zbl0845.93054MR1281288DOI10.1016/0165-0114(94)90009-4
- Pu, P.-M., Liu, Y.-M., 10.1016/0022-247X(80)90048-7, J. Math. Anal. Appl. 76 (1980), 571-599. (1980) Zbl0447.54006MR0587361DOI10.1016/0022-247X(80)90048-7
- Pu, P.-M., Liu, Y.-M., 10.1016/0022-247X(80)90258-9, J. Math. Anal. Appl. 77 (1980), 20-37. (1980) Zbl0447.54007MR0591259DOI10.1016/0022-247X(80)90258-9
- Riečan, B., Markechová, D., 10.1016/S0165-0114(96)00266-7, Fuzzy Sets Syst. 96 (1998), 191-199. (1998) Zbl0926.94012MR1614814DOI10.1016/S0165-0114(96)00266-7
- Thomas, R. F., 10.2140/pjm.1990.141.391, Pac. J. Math. 141 (1990), 391-400. (1990) Zbl0661.58026MR1035451DOI10.2140/pjm.1990.141.391
- Tok, I., On the fuzzy topological entropy function, JFS 28 (2005), 74-80. (2005)
- Walters, P., 10.1007/978-1-4612-5775-2, Graduate Texts in Mathematics 79. Springer, New York (1982). (1982) Zbl0475.28009MR0648108DOI10.1007/978-1-4612-5775-2
- Zadeh, L. A., 10.1016/S0019-9958(65)90241-X, Inf. Control 8 (1965), 338-353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.