Fuzzy differential subordinations connected with the linear operator
Sheza M. El-Deeb; Georgia I. Oros
Mathematica Bohemica (2021)
- Volume: 146, Issue: 4, page 397-406
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topEl-Deeb, Sheza M., and Oros, Georgia I.. "Fuzzy differential subordinations connected with the linear operator." Mathematica Bohemica 146.4 (2021): 397-406. <http://eudml.org/doc/297561>.
@article{El2021,
abstract = {We obtain several fuzzy differential subordinations by using a linear operator $\mathcal \{I\}_\{m,\gamma \}^\{n,\alpha \}f(z)=z+\sum \limits _\{k=2\}^\{\infty \}(1+\gamma ( k-1))^\{n\}m^\{\alpha \}(m+k)^\{-\alpha \}a_\{k\}z^\{k\}$. Using the linear operator $\mathcal \{I\}_\{m,\gamma \}^\{n,\alpha \},$ we also introduce a class of univalent analytic functions for which we give some properties.},
author = {El-Deeb, Sheza M., Oros, Georgia I.},
journal = {Mathematica Bohemica},
keywords = {fuzzy differential subordination; fuzzy best dominant; linear operator},
language = {eng},
number = {4},
pages = {397-406},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fuzzy differential subordinations connected with the linear operator},
url = {http://eudml.org/doc/297561},
volume = {146},
year = {2021},
}
TY - JOUR
AU - El-Deeb, Sheza M.
AU - Oros, Georgia I.
TI - Fuzzy differential subordinations connected with the linear operator
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 397
EP - 406
AB - We obtain several fuzzy differential subordinations by using a linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha }f(z)=z+\sum \limits _{k=2}^{\infty }(1+\gamma ( k-1))^{n}m^{\alpha }(m+k)^{-\alpha }a_{k}z^{k}$. Using the linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha },$ we also introduce a class of univalent analytic functions for which we give some properties.
LA - eng
KW - fuzzy differential subordination; fuzzy best dominant; linear operator
UR - http://eudml.org/doc/297561
ER -
References
top- Al-Oboudi, F. M., 10.1155/S0161171204108090, Int. J. Math. Math. Sci. 25-27 (2004), 1429-1436. (2004) Zbl1072.30009MR2085011DOI10.1155/S0161171204108090
- Lupaş, A. Alb, On special fuzzy differerential subordinations using convolution product of Sălăgean operator and Ruscheweyh derivative, J. Comput. Anal. Appl. 15 (2013), 1484-1489. (2013) Zbl1290.30013MR3075680
- Lupaş, A. Alb, Oros, G., 10.1016/j.amc.2015.03.087, Appl. Math. Comput. 261 (2015), 119-127. (2015) Zbl1410.30011MR3345263DOI10.1016/j.amc.2015.03.087
- Aouf, M. K., 10.1016/j.mcm.2008.10.023, Math. Comput. Modelling 50 (2009), 1360-1366. (2009) Zbl1185.30011MR2583425DOI10.1016/j.mcm.2008.10.023
- Aouf, M. K., The Komatu integral operator and strongly close-to-convex functions, Bull. Math. Anal. Appl. 3 (2011), 209-219. (2011) Zbl1314.30017MR2955361
- Bernardi, S. D., 10.1090/S0002-9947-1969-0232920-2, Trans. Am. Math. Soc. 135 (1969), 429-446. (1969) Zbl0172.09703MR232920DOI10.1090/S0002-9947-1969-0232920-2
- Bulboacă, T., Differential Subordinations and Superordinations: Recent Results, House of Scientic Book Publ., Cluj-Napoca (2005). (2005)
- Ebadian, A., Najafzadeh, S., Uniformly starlike and convex univalent functions by using certain integral operators, Acta Univ. Apulensis, Math. Inform. 20 (2009), 17-23. (2009) Zbl1224.30046MR2656769
- El-Ashwah, R. M., Aouf, M. K., El-Deeb, S. M., 10.1155/2013/692045, J. Math. 2013 (2013), Article ID 692045, 8 pages. (2013) Zbl1268.30011MR3100736DOI10.1155/2013/692045
- Gal, S. G., Ban, A. I., Elemente de Matematica Fuzzy, University of Oradea, Oradea (1996), Romanian. (1996)
- Khairnar, S. M., More, M., On a subclass of multivalent -uniformly starlike and convex functions defined by a linear operator, IAENG, Int. J. Appl. Math. 39 (2009), 175-183. (2009) Zbl1229.30008MR2554929
- Komatu, Y., On analytic prolongation of a family of integral operators, Math., Rev. Anal. Numér. Théor. Approximation, Math. 32(55) (1990), 141-145. (1990) Zbl0753.30005MR1159903
- Miller, S. S., Mocanu, P. T., 10.1201/9781482289817, Pure and Applied Mathematics, Marcel Dekker 225. Marcel Dekker, New York (2000). (2000) Zbl0954.34003MR1760285DOI10.1201/9781482289817
- Oros, G. I., Oros, G., The notation of subordination in fuzzy sets theory, Gen. Math. 19 (2011), 97-103. (2011) Zbl1265.03050MR2879082
- Oros, G. I., Oros, G., Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babeş-Bolyai, Math. 57 (2012), 239-248. (2012) Zbl1274.30059MR2974592
- Oros, G. I., Oros, G., Fuzzy differential subordination, Acta Univ. Apulensis, Math. Inform. 30 (2012), 55-64. (2012) Zbl1289.30155MR3025317
- Raina, R. K., Bapna, I. B., On the starlikeness and convexity of a certain integral operator, Southeast Asian Bull. Math. 33 (2009), 101-108. (2009) Zbl1212.30066MR2481938
- Sălăgean, G. S., 10.1007/BFb0066543, Complex Analysis -- Fifth Romanian-Finnish Seminar Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. (1983) Zbl0531.30009MR738107DOI10.1007/BFb0066543
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.