Fuzzy differential subordinations connected with the linear operator

Sheza M. El-Deeb; Georgia I. Oros

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 397-406
  • ISSN: 0862-7959

Abstract

top
We obtain several fuzzy differential subordinations by using a linear operator m , γ n , α f ( z ) = z + k = 2 ( 1 + γ ( k - 1 ) ) n m α ( m + k ) - α a k z k . Using the linear operator m , γ n , α , we also introduce a class of univalent analytic functions for which we give some properties.

How to cite

top

El-Deeb, Sheza M., and Oros, Georgia I.. "Fuzzy differential subordinations connected with the linear operator." Mathematica Bohemica 146.4 (2021): 397-406. <http://eudml.org/doc/297561>.

@article{El2021,
abstract = {We obtain several fuzzy differential subordinations by using a linear operator $\mathcal \{I\}_\{m,\gamma \}^\{n,\alpha \}f(z)=z+\sum \limits _\{k=2\}^\{\infty \}(1+\gamma ( k-1))^\{n\}m^\{\alpha \}(m+k)^\{-\alpha \}a_\{k\}z^\{k\}$. Using the linear operator $\mathcal \{I\}_\{m,\gamma \}^\{n,\alpha \},$ we also introduce a class of univalent analytic functions for which we give some properties.},
author = {El-Deeb, Sheza M., Oros, Georgia I.},
journal = {Mathematica Bohemica},
keywords = {fuzzy differential subordination; fuzzy best dominant; linear operator},
language = {eng},
number = {4},
pages = {397-406},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fuzzy differential subordinations connected with the linear operator},
url = {http://eudml.org/doc/297561},
volume = {146},
year = {2021},
}

TY - JOUR
AU - El-Deeb, Sheza M.
AU - Oros, Georgia I.
TI - Fuzzy differential subordinations connected with the linear operator
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 397
EP - 406
AB - We obtain several fuzzy differential subordinations by using a linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha }f(z)=z+\sum \limits _{k=2}^{\infty }(1+\gamma ( k-1))^{n}m^{\alpha }(m+k)^{-\alpha }a_{k}z^{k}$. Using the linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha },$ we also introduce a class of univalent analytic functions for which we give some properties.
LA - eng
KW - fuzzy differential subordination; fuzzy best dominant; linear operator
UR - http://eudml.org/doc/297561
ER -

References

top
  1. Al-Oboudi, F. M., 10.1155/S0161171204108090, Int. J. Math. Math. Sci. 25-27 (2004), 1429-1436. (2004) Zbl1072.30009MR2085011DOI10.1155/S0161171204108090
  2. Lupaş, A. Alb, On special fuzzy differerential subordinations using convolution product of Sălăgean operator and Ruscheweyh derivative, J. Comput. Anal. Appl. 15 (2013), 1484-1489. (2013) Zbl1290.30013MR3075680
  3. Lupaş, A. Alb, Oros, G., 10.1016/j.amc.2015.03.087, Appl. Math. Comput. 261 (2015), 119-127. (2015) Zbl1410.30011MR3345263DOI10.1016/j.amc.2015.03.087
  4. Aouf, M. K., 10.1016/j.mcm.2008.10.023, Math. Comput. Modelling 50 (2009), 1360-1366. (2009) Zbl1185.30011MR2583425DOI10.1016/j.mcm.2008.10.023
  5. Aouf, M. K., The Komatu integral operator and strongly close-to-convex functions, Bull. Math. Anal. Appl. 3 (2011), 209-219. (2011) Zbl1314.30017MR2955361
  6. Bernardi, S. D., 10.1090/S0002-9947-1969-0232920-2, Trans. Am. Math. Soc. 135 (1969), 429-446. (1969) Zbl0172.09703MR232920DOI10.1090/S0002-9947-1969-0232920-2
  7. Bulboacă, T., Differential Subordinations and Superordinations: Recent Results, House of Scientic Book Publ., Cluj-Napoca (2005). (2005) 
  8. Ebadian, A., Najafzadeh, S., Uniformly starlike and convex univalent functions by using certain integral operators, Acta Univ. Apulensis, Math. Inform. 20 (2009), 17-23. (2009) Zbl1224.30046MR2656769
  9. El-Ashwah, R. M., Aouf, M. K., El-Deeb, S. M., 10.1155/2013/692045, J. Math. 2013 (2013), Article ID 692045, 8 pages. (2013) Zbl1268.30011MR3100736DOI10.1155/2013/692045
  10. Gal, S. G., Ban, A. I., Elemente de Matematica Fuzzy, University of Oradea, Oradea (1996), Romanian. (1996) 
  11. Khairnar, S. M., More, M., On a subclass of multivalent β -uniformly starlike and convex functions defined by a linear operator, IAENG, Int. J. Appl. Math. 39 (2009), 175-183. (2009) Zbl1229.30008MR2554929
  12. Komatu, Y., On analytic prolongation of a family of integral operators, Math., Rev. Anal. Numér. Théor. Approximation, Math. 32(55) (1990), 141-145. (1990) Zbl0753.30005MR1159903
  13. Miller, S. S., Mocanu, P. T., 10.1201/9781482289817, Pure and Applied Mathematics, Marcel Dekker 225. Marcel Dekker, New York (2000). (2000) Zbl0954.34003MR1760285DOI10.1201/9781482289817
  14. Oros, G. I., Oros, G., The notation of subordination in fuzzy sets theory, Gen. Math. 19 (2011), 97-103. (2011) Zbl1265.03050MR2879082
  15. Oros, G. I., Oros, G., Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babeş-Bolyai, Math. 57 (2012), 239-248. (2012) Zbl1274.30059MR2974592
  16. Oros, G. I., Oros, G., Fuzzy differential subordination, Acta Univ. Apulensis, Math. Inform. 30 (2012), 55-64. (2012) Zbl1289.30155MR3025317
  17. Raina, R. K., Bapna, I. B., On the starlikeness and convexity of a certain integral operator, Southeast Asian Bull. Math. 33 (2009), 101-108. (2009) Zbl1212.30066MR2481938
  18. Sălăgean, G. S., 10.1007/BFb0066543, Complex Analysis -- Fifth Romanian-Finnish Seminar Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. (1983) Zbl0531.30009MR738107DOI10.1007/BFb0066543

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.