Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions
Gergely Szlobodnyik; Gábor Szederkényi
Kybernetika (2021)
- Volume: 57, Issue: 6, page 939-957
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSzlobodnyik, Gergely, and Szederkényi, Gábor. "Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions." Kybernetika 57.6 (2021): 939-957. <http://eudml.org/doc/297581>.
@article{Szlobodnyik2021,
abstract = {In this paper a novel method is proposed for the structural identifiability analysis of nonlinear time delayed systems. It is assumed that all the nonlinearities are analytic functions and the time delays are constant. We consider the joint structural identifiability of models with respect to the ordinary system parameters and time delays by including delays into a unified parameter set. We employ the Volterra series representation of nonlinear dynamical systems and make use of the frequency domain representations of the Volterra kernels, i. e. the Generalized Frequency Response Functions (GFRFs), in order to test the unique computability of the parameters. The advantage of representing nonlinear systems with their GFRFs is that in the frequency domain representation the time delay parameters appear explicitly in the exponents of complex exponential functions from which they can be easily extracted. Since the GFRFs can be symmetrized to be unique, they provide us with an exhaustive summary of the underlying model structure. We use the GFRFs to derive equations for testing structural identifiability. Unique solution of the composed equations with respect to the parameters provides sufficient conditions for structural identifiability. Our method is illustrated on non-linear dynamical system models of different degrees of non-linearities and multiple time delayed terms. Since Volterra series representation can be applied for input-output models, it is also shown that after differential algebraic elimination of unobserved state variables, the proposed method can be suitable for identifiability analysis of a more general class of non-linear time delayed state space models.},
author = {Szlobodnyik, Gergely, Szederkényi, Gábor},
journal = {Kybernetika},
keywords = {structural identifiability; Volterra series; generalized frequency response},
language = {eng},
number = {6},
pages = {939-957},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions},
url = {http://eudml.org/doc/297581},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Szlobodnyik, Gergely
AU - Szederkényi, Gábor
TI - Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 6
SP - 939
EP - 957
AB - In this paper a novel method is proposed for the structural identifiability analysis of nonlinear time delayed systems. It is assumed that all the nonlinearities are analytic functions and the time delays are constant. We consider the joint structural identifiability of models with respect to the ordinary system parameters and time delays by including delays into a unified parameter set. We employ the Volterra series representation of nonlinear dynamical systems and make use of the frequency domain representations of the Volterra kernels, i. e. the Generalized Frequency Response Functions (GFRFs), in order to test the unique computability of the parameters. The advantage of representing nonlinear systems with their GFRFs is that in the frequency domain representation the time delay parameters appear explicitly in the exponents of complex exponential functions from which they can be easily extracted. Since the GFRFs can be symmetrized to be unique, they provide us with an exhaustive summary of the underlying model structure. We use the GFRFs to derive equations for testing structural identifiability. Unique solution of the composed equations with respect to the parameters provides sufficient conditions for structural identifiability. Our method is illustrated on non-linear dynamical system models of different degrees of non-linearities and multiple time delayed terms. Since Volterra series representation can be applied for input-output models, it is also shown that after differential algebraic elimination of unobserved state variables, the proposed method can be suitable for identifiability analysis of a more general class of non-linear time delayed state space models.
LA - eng
KW - structural identifiability; Volterra series; generalized frequency response
UR - http://eudml.org/doc/297581
ER -
References
top- Anguelova, M., Wennberg, B., , Automatica 44 (2008), 5, 1373-1378. Zbl1283.93084MR2531805DOI
- al., S. Audoly et., , IEEE. Trans. Biomed. Engrg. 48 (2001), 55-65. DOI
- Bayma, R. S., Lang, Z. Q., , IEEE Trans. Circuits Systems I 59 (2012), 12, 3005-3014. MR3006575DOI
- Bedrosian, E., Rice, S. O., , Proc. IEEE 59 (1971), 12, 1688-1707. MR0396037DOI
- Belkoura, L., Orlov, Y., , IMA J. Math. Control Inform. 19 (2002), 73-81. MR1899005DOI
- Bellman, R., Aström, K. J., , Math. Biosci. 7 (1970), 3-4, 329-339. MR0820403DOI
- al., G. Bellu et., , Comput. Methods Programs Biomed. 88 (2007), 52-61. DOI
- Billings, S. A., Tsang, K. M., , Mechanic. Systems Signal Process. 3 (1989), 4, 319-339. DOI
- Bocharov, G. A., Rihan, F. A., 10.1016/S0377-0427(00)00468-4, J. Comput. Appl. Math. 125 (2000), 1-2, 183-199. MR1803191DOI10.1016/S0377-0427(00)00468-4
- Cheng, C. M., Peng, Z. K., Zhang, W. M., Meng, G., , Mech. Systems Signal Process. 87 (2017), 340-364. DOI
- Chis, O. T., Banga, J. R., Balsa-Canto, E., Structural identifiability of systems biology models: a critical comparison of methods., PloS One 6 (2011), 11.
- Churilov, A. N., Medvedev, A., Zhusubaliyev, Z. T., , Nonlinear Analysis: Hybrid Systems 21 (2016), 171-183. MR3500080DOI
- Cooke, K., Driessche, P. Van den, Zou, X., , J. Math. Biology 39 (1999), 4, 332-352. MR1727839DOI
- Denis–Vidal, L., Joly–Blanchard, G., Noiret, C., , Math. Comput. Simul. 57 (2000), 35-44. MR1845551DOI
- Epstein, I. R., Luo, Y., , J. Chem. Phys. 95 (1991), 244-254. DOI
- Fliess, M., 10.24033/bsmf.1931, Bull. Soc. Math. France 109 (1981), 3-40. MR0613847DOI10.24033/bsmf.1931
- George, D., Continuous Nonlinear Systems., MIT RLE Technical Report No. 355, 1959.
- Glad, T., Nonlinear state space and input-output descriptions using differential polynomials. In Descusse., Lecture Notes in Control and Information Science J. (M. Fliess, A. Isidori and D. Leborgne, eds.), Vol. 122., Springer Berlin. MR1229775
- Hermann, K., Krener, A., , IEEE Trans. Automat. Control, 22 (1977), 5, 728-740. MR0476017DOI
- al., B. Huang et., , Physical Review E 94 (2016), 5, 052413. DOI
- Isidori, A., Nonlinear Control Systems. Second edition., Springer-Verlag, Berlin 1989. MR1015932
- Kuang, Y., Delay Differential Equations With Applications in Population Dynamics., Academic Press, Boston 1993. Zbl0777.34002MR1218880
- Lapytsko, A., Schaber, J., , J. Theoret. Biology 398 (2016), 64-73. DOI
- Li, J., Kuang, Y., Mason, C. C., , J. Theoret. Biology 242 (2006), 3, 722-735. MR2272815DOI
- Liz, E., Ruiz-Herrera, A., 10.3934/mbe.2015.12.83, Math. Biosci. Engrg. 12 (2015), 1, 83-97. MR3327914DOI10.3934/mbe.2015.12.83
- Ljung, L., System Identification: Theory for the User. Second edition,, Prentice-Hall, Upper Saddle River, NJ 1999.
- Ljung, L., Glad, T., , Automatica 30 (1994), 2, 265-276. MR1261705DOI
- Ljung, L., Glad, T., Modeling of Dynamic Systems., PTR Prentice Hall, 1994.
- Lunel, V., Sjoerd, M., Identification problems in functional differential equations., Proc. 36th IEEE Conference on Decision and Control IEEE 5 (1997), 4409-4413.
- MacDonald, N., 10.1007/978-3-642-93107-9, Lecture Notes in Biomathematics, Vol. 27, Springer, Berlin 1978. MR0521439DOI10.1007/978-3-642-93107-9
- MacDonald, N., Biological Delay Systems: Linear Stability Theory., Cambridge University Press, Cambridge, 1989. MR0996637
- Meshkat, N., Eisenberg, M., DiStefano, J. J., 10.1016/j.mbs.2009.08.010, Math. Biosci. 222 (2009), 61-72. MR2584099DOI10.1016/j.mbs.2009.08.010
- al, Y. Orlov et., , IEEE Trans. Automat. Control 47 (2002), 8, 1319-1324. MR1917442DOI
- Orosz, G., Moehlis, J., Murray, R. M., , Philosoph. Trans. Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1911), (2010), 439-454. MR2571005DOI
- Palm, G., Poggio, T., , SIAM J. Appl. Math. 33 (1977), 2, 195-216. MR0452959DOI
- Peng, Z. K., al, et., , Mech. Syst. Signal Process. 25 (2011), 3, 1045-1061. DOI
- Pohjanpalo, H., , Math. Biosci. 41 (1978), 21-33. MR0507373DOI
- Ritt, J. F., Differential Algebra., American Mathematical Society, Providence 1950.
- Roussel, M. R., , J. Phys. Chem. 100 (1996), 20, 8323-8330. DOI
- Rugh, W. J., Linear System Theory., Prentice Hall, New Jersey 1996. Zbl0892.93002MR1211190
- Schwaiger, J., Prager, W., Polynomials in additive functions and generalized polynomials., Demonstratio Math. 41 (2008), 3, 589-613. MR2433311
- Silva, C. J., Maurer, H., Torres, D. F. M., 10.3934/mbe.2017021, Math. Biosci. Engrg. 14 (2017), 1, 321-337. MR3562914DOI10.3934/mbe.2017021
- Smith, H., An Introduction to Delay Differential Equations with Applications to the Life Sciences., Springer, New York 2011. MR2724792
- Söderström, T., Stoica, P., System Identification., Prentice-Hall, 1989.
- Swain, A. K., Mendes, E. M. A. M., Nguang, S. K., , J. Sound Vibration 294 (2006), 1-2, 341-354. DOI
- Vághy, M., Szlobodnyik, G., Szederkényi, G., , IFAC-PapersOnLine 52 (2019), 7, 45-50. DOI
- al., S. Vajda et., , Chem. Engrg. Commun. 83 (1989), 191-219. DOI
- Vajda, S., Godfrey, K., Rabitz, H., , Math. Biosci. 93 (1989), 217-248. MR0984279DOI
- Vajda, S., Rabitz, H., , IEEE Trans. Automat. Control 34 (1989), 220-223. MR0975592DOI
- Villaverde, A. F., Barreiro, A., Identifiability of large non-linear biochemical networks., MATCH - Commun. Math. Comput. Chemistry 76 (2016), 2, 259-296. MR3617365
- Walter, E., Identifiability of Parametric Models., Pergamon Press, Oxford 1987.
- Walter, E., Lecourtier, Y., 10.1016/0025-5564(81)90025-0, Math. Biosci. 56 (1981), 1-25. MR0627081DOI10.1016/0025-5564(81)90025-0
- Walter, E., Lecourtier, Y., , Math. Comput. Simul. 24 (1982), 472-482. MR0710757DOI
- Walter, E., Pronzato, L., , Math. Comput. Simul. 42 (1996), 125-134. DOI
- Walter, E., Pronzato, L., Identification of Parametric Models from Experimental Data., Springer Verlag, 1997. MR1482525
- Weijiu, L., Introduction to Modeling Biological Cellular Control Systems., Springer Science and Business Media, 2012. MR2952048
- Villaverde, A. F., 10.1155/2019/8497093, Complexity, 2019. DOI10.1155/2019/8497093
- Villaverde, A. F., Barreiro, A., Papachristodoulou, A., , PLOS Comput. Biology 12 (2016), 10. DOI
- Volterra, V., Theory of Functionals and Integral Equations., Dover, New York 1959. MR0100765
- Xia, X., Moog, C. H., 10.1109/TAC.2002.808494, IEEE Trans. Automat. Control 4 (2003), 330-336. MR1957979DOI10.1109/TAC.2002.808494
- Yuan, Y., Li, Y., Study on EEG time series based on duffing equation., In: International Conference on BioMedical Engineering and Informatics, Vol. 2, Sanya S2008, pp. 516-519.
- Zhang, H., Billings, S. A., Zhu, Q. M., , Int. J. Control 61 (1995), 1073-1097. MR1613121DOI
- Zhang, J., Xia, X., Moog, C. H., , IEEE Trans. Automat. Control 51 (2006), 2, 371-375. MR2201731DOI
- Zheng, G., Barbot, J. P., Boutat, D., , Automatica 49 (2013), 6, 1755-1760. MR3049224DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.