Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions

Gergely Szlobodnyik; Gábor Szederkényi

Kybernetika (2021)

  • Volume: 57, Issue: 6, page 939-957
  • ISSN: 0023-5954

Abstract

top
In this paper a novel method is proposed for the structural identifiability analysis of nonlinear time delayed systems. It is assumed that all the nonlinearities are analytic functions and the time delays are constant. We consider the joint structural identifiability of models with respect to the ordinary system parameters and time delays by including delays into a unified parameter set. We employ the Volterra series representation of nonlinear dynamical systems and make use of the frequency domain representations of the Volterra kernels, i. e. the Generalized Frequency Response Functions (GFRFs), in order to test the unique computability of the parameters. The advantage of representing nonlinear systems with their GFRFs is that in the frequency domain representation the time delay parameters appear explicitly in the exponents of complex exponential functions from which they can be easily extracted. Since the GFRFs can be symmetrized to be unique, they provide us with an exhaustive summary of the underlying model structure. We use the GFRFs to derive equations for testing structural identifiability. Unique solution of the composed equations with respect to the parameters provides sufficient conditions for structural identifiability. Our method is illustrated on non-linear dynamical system models of different degrees of non-linearities and multiple time delayed terms. Since Volterra series representation can be applied for input-output models, it is also shown that after differential algebraic elimination of unobserved state variables, the proposed method can be suitable for identifiability analysis of a more general class of non-linear time delayed state space models.

How to cite

top

Szlobodnyik, Gergely, and Szederkényi, Gábor. "Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions." Kybernetika 57.6 (2021): 939-957. <http://eudml.org/doc/297581>.

@article{Szlobodnyik2021,
abstract = {In this paper a novel method is proposed for the structural identifiability analysis of nonlinear time delayed systems. It is assumed that all the nonlinearities are analytic functions and the time delays are constant. We consider the joint structural identifiability of models with respect to the ordinary system parameters and time delays by including delays into a unified parameter set. We employ the Volterra series representation of nonlinear dynamical systems and make use of the frequency domain representations of the Volterra kernels, i. e. the Generalized Frequency Response Functions (GFRFs), in order to test the unique computability of the parameters. The advantage of representing nonlinear systems with their GFRFs is that in the frequency domain representation the time delay parameters appear explicitly in the exponents of complex exponential functions from which they can be easily extracted. Since the GFRFs can be symmetrized to be unique, they provide us with an exhaustive summary of the underlying model structure. We use the GFRFs to derive equations for testing structural identifiability. Unique solution of the composed equations with respect to the parameters provides sufficient conditions for structural identifiability. Our method is illustrated on non-linear dynamical system models of different degrees of non-linearities and multiple time delayed terms. Since Volterra series representation can be applied for input-output models, it is also shown that after differential algebraic elimination of unobserved state variables, the proposed method can be suitable for identifiability analysis of a more general class of non-linear time delayed state space models.},
author = {Szlobodnyik, Gergely, Szederkényi, Gábor},
journal = {Kybernetika},
keywords = {structural identifiability; Volterra series; generalized frequency response},
language = {eng},
number = {6},
pages = {939-957},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions},
url = {http://eudml.org/doc/297581},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Szlobodnyik, Gergely
AU - Szederkényi, Gábor
TI - Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 6
SP - 939
EP - 957
AB - In this paper a novel method is proposed for the structural identifiability analysis of nonlinear time delayed systems. It is assumed that all the nonlinearities are analytic functions and the time delays are constant. We consider the joint structural identifiability of models with respect to the ordinary system parameters and time delays by including delays into a unified parameter set. We employ the Volterra series representation of nonlinear dynamical systems and make use of the frequency domain representations of the Volterra kernels, i. e. the Generalized Frequency Response Functions (GFRFs), in order to test the unique computability of the parameters. The advantage of representing nonlinear systems with their GFRFs is that in the frequency domain representation the time delay parameters appear explicitly in the exponents of complex exponential functions from which they can be easily extracted. Since the GFRFs can be symmetrized to be unique, they provide us with an exhaustive summary of the underlying model structure. We use the GFRFs to derive equations for testing structural identifiability. Unique solution of the composed equations with respect to the parameters provides sufficient conditions for structural identifiability. Our method is illustrated on non-linear dynamical system models of different degrees of non-linearities and multiple time delayed terms. Since Volterra series representation can be applied for input-output models, it is also shown that after differential algebraic elimination of unobserved state variables, the proposed method can be suitable for identifiability analysis of a more general class of non-linear time delayed state space models.
LA - eng
KW - structural identifiability; Volterra series; generalized frequency response
UR - http://eudml.org/doc/297581
ER -

References

top
  1. Anguelova, M., Wennberg, B., , Automatica 44 (2008), 5, 1373-1378. Zbl1283.93084MR2531805DOI
  2. al., S. Audoly et., , IEEE. Trans. Biomed. Engrg. 48 (2001), 55-65. DOI
  3. Bayma, R. S., Lang, Z. Q., , IEEE Trans. Circuits Systems I 59 (2012), 12, 3005-3014. MR3006575DOI
  4. Bedrosian, E., Rice, S. O., , Proc. IEEE 59 (1971), 12, 1688-1707. MR0396037DOI
  5. Belkoura, L., Orlov, Y., , IMA J. Math. Control Inform. 19 (2002), 73-81. MR1899005DOI
  6. Bellman, R., Aström, K. J., , Math. Biosci. 7 (1970), 3-4, 329-339. MR0820403DOI
  7. al., G. Bellu et., , Comput. Methods Programs Biomed. 88 (2007), 52-61. DOI
  8. Billings, S. A., Tsang, K. M., , Mechanic. Systems Signal Process. 3 (1989), 4, 319-339. DOI
  9. Bocharov, G. A., Rihan, F. A., 10.1016/S0377-0427(00)00468-4, J. Comput. Appl. Math. 125 (2000), 1-2, 183-199. MR1803191DOI10.1016/S0377-0427(00)00468-4
  10. Cheng, C. M., Peng, Z. K., Zhang, W. M., Meng, G., , Mech. Systems Signal Process. 87 (2017), 340-364. DOI
  11. Chis, O. T., Banga, J. R., Balsa-Canto, E., Structural identifiability of systems biology models: a critical comparison of methods., PloS One 6 (2011), 11. 
  12. Churilov, A. N., Medvedev, A., Zhusubaliyev, Z. T., , Nonlinear Analysis: Hybrid Systems 21 (2016), 171-183. MR3500080DOI
  13. Cooke, K., Driessche, P. Van den, Zou, X., , J. Math. Biology 39 (1999), 4, 332-352. MR1727839DOI
  14. Denis–Vidal, L., Joly–Blanchard, G., Noiret, C., , Math. Comput. Simul. 57 (2000), 35-44. MR1845551DOI
  15. Epstein, I. R., Luo, Y., , J. Chem. Phys. 95 (1991), 244-254. DOI
  16. Fliess, M., 10.24033/bsmf.1931, Bull. Soc. Math. France 109 (1981), 3-40. MR0613847DOI10.24033/bsmf.1931
  17. George, D., Continuous Nonlinear Systems., MIT RLE Technical Report No. 355, 1959. 
  18. Glad, T., Nonlinear state space and input-output descriptions using differential polynomials. In Descusse., Lecture Notes in Control and Information Science J. (M. Fliess, A. Isidori and D. Leborgne, eds.), Vol. 122., Springer Berlin. MR1229775
  19. Hermann, K., Krener, A., , IEEE Trans. Automat. Control, 22 (1977), 5, 728-740. MR0476017DOI
  20. al., B. Huang et., , Physical Review E 94 (2016), 5, 052413. DOI
  21. Isidori, A., Nonlinear Control Systems. Second edition., Springer-Verlag, Berlin 1989. MR1015932
  22. Kuang, Y., Delay Differential Equations With Applications in Population Dynamics., Academic Press, Boston 1993. Zbl0777.34002MR1218880
  23. Lapytsko, A., Schaber, J., , J. Theoret. Biology 398 (2016), 64-73. DOI
  24. Li, J., Kuang, Y., Mason, C. C., , J. Theoret. Biology 242 (2006), 3, 722-735. MR2272815DOI
  25. Liz, E., Ruiz-Herrera, A., 10.3934/mbe.2015.12.83, Math. Biosci. Engrg. 12 (2015), 1, 83-97. MR3327914DOI10.3934/mbe.2015.12.83
  26. Ljung, L., System Identification: Theory for the User. Second edition,, Prentice-Hall, Upper Saddle River, NJ 1999. 
  27. Ljung, L., Glad, T., , Automatica 30 (1994), 2, 265-276. MR1261705DOI
  28. Ljung, L., Glad, T., Modeling of Dynamic Systems., PTR Prentice Hall, 1994. 
  29. Lunel, V., Sjoerd, M., Identification problems in functional differential equations., Proc. 36th IEEE Conference on Decision and Control IEEE 5 (1997), 4409-4413. 
  30. MacDonald, N., 10.1007/978-3-642-93107-9, Lecture Notes in Biomathematics, Vol. 27, Springer, Berlin 1978. MR0521439DOI10.1007/978-3-642-93107-9
  31. MacDonald, N., Biological Delay Systems: Linear Stability Theory., Cambridge University Press, Cambridge, 1989. MR0996637
  32. Meshkat, N., Eisenberg, M., DiStefano, J. J., 10.1016/j.mbs.2009.08.010, Math. Biosci. 222 (2009), 61-72. MR2584099DOI10.1016/j.mbs.2009.08.010
  33. al, Y. Orlov et., , IEEE Trans. Automat. Control 47 (2002), 8, 1319-1324. MR1917442DOI
  34. Orosz, G., Moehlis, J., Murray, R. M., , Philosoph. Trans. Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1911), (2010), 439-454. MR2571005DOI
  35. Palm, G., Poggio, T., , SIAM J. Appl. Math. 33 (1977), 2, 195-216. MR0452959DOI
  36. Peng, Z. K., al, et., , Mech. Syst. Signal Process. 25 (2011), 3, 1045-1061. DOI
  37. Pohjanpalo, H., , Math. Biosci. 41 (1978), 21-33. MR0507373DOI
  38. Ritt, J. F., Differential Algebra., American Mathematical Society, Providence 1950. 
  39. Roussel, M. R., , J. Phys. Chem. 100 (1996), 20, 8323-8330. DOI
  40. Rugh, W. J., Linear System Theory., Prentice Hall, New Jersey 1996. Zbl0892.93002MR1211190
  41. Schwaiger, J., Prager, W., Polynomials in additive functions and generalized polynomials., Demonstratio Math. 41 (2008), 3, 589-613. MR2433311
  42. Silva, C. J., Maurer, H., Torres, D. F. M., 10.3934/mbe.2017021, Math. Biosci. Engrg. 14 (2017), 1, 321-337. MR3562914DOI10.3934/mbe.2017021
  43. Smith, H., An Introduction to Delay Differential Equations with Applications to the Life Sciences., Springer, New York 2011. MR2724792
  44. Söderström, T., Stoica, P., System Identification., Prentice-Hall, 1989. 
  45. Swain, A. K., Mendes, E. M. A. M., Nguang, S. K., , J. Sound Vibration 294 (2006), 1-2, 341-354. DOI
  46. Vághy, M., Szlobodnyik, G., Szederkényi, G., , IFAC-PapersOnLine 52 (2019), 7, 45-50. DOI
  47. al., S. Vajda et., , Chem. Engrg. Commun. 83 (1989), 191-219. DOI
  48. Vajda, S., Godfrey, K., Rabitz, H., , Math. Biosci. 93 (1989), 217-248. MR0984279DOI
  49. Vajda, S., Rabitz, H., , IEEE Trans. Automat. Control 34 (1989), 220-223. MR0975592DOI
  50. Villaverde, A. F., Barreiro, A., Identifiability of large non-linear biochemical networks., MATCH - Commun. Math. Comput. Chemistry 76 (2016), 2, 259-296. MR3617365
  51. Walter, E., Identifiability of Parametric Models., Pergamon Press, Oxford 1987. 
  52. Walter, E., Lecourtier, Y., 10.1016/0025-5564(81)90025-0, Math. Biosci. 56 (1981), 1-25. MR0627081DOI10.1016/0025-5564(81)90025-0
  53. Walter, E., Lecourtier, Y., , Math. Comput. Simul. 24 (1982), 472-482. MR0710757DOI
  54. Walter, E., Pronzato, L., , Math. Comput. Simul. 42 (1996), 125-134. DOI
  55. Walter, E., Pronzato, L., Identification of Parametric Models from Experimental Data., Springer Verlag, 1997. MR1482525
  56. Weijiu, L., Introduction to Modeling Biological Cellular Control Systems., Springer Science and Business Media, 2012. MR2952048
  57. Villaverde, A. F., 10.1155/2019/8497093, Complexity, 2019. DOI10.1155/2019/8497093
  58. Villaverde, A. F., Barreiro, A., Papachristodoulou, A., , PLOS Comput. Biology 12 (2016), 10. DOI
  59. Volterra, V., Theory of Functionals and Integral Equations., Dover, New York 1959. MR0100765
  60. Xia, X., Moog, C. H., 10.1109/TAC.2002.808494, IEEE Trans. Automat. Control 4 (2003), 330-336. MR1957979DOI10.1109/TAC.2002.808494
  61. Yuan, Y., Li, Y., Study on EEG time series based on duffing equation., In: International Conference on BioMedical Engineering and Informatics, Vol. 2, Sanya S2008, pp. 516-519. 
  62. Zhang, H., Billings, S. A., Zhu, Q. M., , Int. J. Control 61 (1995), 1073-1097. MR1613121DOI
  63. Zhang, J., Xia, X., Moog, C. H., , IEEE Trans. Automat. Control 51 (2006), 2, 371-375. MR2201731DOI
  64. Zheng, G., Barbot, J. P., Boutat, D., , Automatica 49 (2013), 6, 1755-1760. MR3049224DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.