Global existence and L p decay estimate of solution for Cahn-Hilliard equation with inertial term

Hongmei Xu; Qi Li

Applications of Mathematics (2021)

  • Volume: 66, Issue: 4, page 583-597
  • ISSN: 0862-7940

Abstract

top
The Cauchy problem of the Cahn-Hilliard equation with inertial term in multi space dimension is considered. Based on detailed analysis of Green’s function, using fixed-point theorem, we get the global existence in time of classical solution with large initial data. Furthermore, we get L p decay rate of the solution.

How to cite

top

Xu, Hongmei, and Li, Qi. "Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term." Applications of Mathematics 66.4 (2021): 583-597. <http://eudml.org/doc/297609>.

@article{Xu2021,
abstract = {The Cauchy problem of the Cahn-Hilliard equation with inertial term in multi space dimension is considered. Based on detailed analysis of Green’s function, using fixed-point theorem, we get the global existence in time of classical solution with large initial data. Furthermore, we get $L_p$ decay rate of the solution.},
author = {Xu, Hongmei, Li, Qi},
journal = {Applications of Mathematics},
keywords = {Cahn-Hilliard equation with inertial term; large initial data; classical solution; $L_p$ decay},
language = {eng},
number = {4},
pages = {583-597},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term},
url = {http://eudml.org/doc/297609},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Xu, Hongmei
AU - Li, Qi
TI - Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 583
EP - 597
AB - The Cauchy problem of the Cahn-Hilliard equation with inertial term in multi space dimension is considered. Based on detailed analysis of Green’s function, using fixed-point theorem, we get the global existence in time of classical solution with large initial data. Furthermore, we get $L_p$ decay rate of the solution.
LA - eng
KW - Cahn-Hilliard equation with inertial term; large initial data; classical solution; $L_p$ decay
UR - http://eudml.org/doc/297609
ER -

References

top
  1. Caffarelli, L. A., Muler, N. E., 10.1007/BF00376814, Arch. Ration. Mech. Anal. 133 (1995), 129-144. (1995) Zbl0851.35010MR1367359DOI10.1007/BF00376814
  2. Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 28 (1958), 258-267. (1958) Zbl1431.35066DOI10.1063/1.1744102
  3. Deng, S., Wang, W., Zhao, H., 10.1016/j.nonrwa.2010.05.024, Nonlinear Anal., Real World Appl. 11 (2010), 4404-4414. (2010) Zbl1202.35138MR2683885DOI10.1016/j.nonrwa.2010.05.024
  4. Efendiev, M., Miranville, A., Zelik, S., 10.1002/mana.200310186, Math. Nachr. 272 (2004), 11-31. (2004) Zbl1046.37047MR2079758DOI10.1002/mana.200310186
  5. Elliott, C. M., Zheng, S., 10.1007/BF00251803, Arch. Ration. Mech. Anal. 96 (1986), 339-357. (1986) Zbl0624.35048MR0855754DOI10.1007/BF00251803
  6. Galenko, P., 10.1016/S0375-9601(01)00489-3, Phys. Lett., A 287 (2001), 190-197. (2001) DOI10.1016/S0375-9601(01)00489-3
  7. Galenko, P., Jou, D., 10.1103/PhysRevE.71.046125, Phys. Rev. E 71 (2005), Article ID 046125. (2005) DOI10.1103/PhysRevE.71.046125
  8. Galenko, P., Lebedev, V., 10.1080/09500830701395127, Philos. Mag. Lett. 87 (2007), 821-827. (2007) DOI10.1080/09500830701395127
  9. Galenko, P., Lebedev, V., Local nonequilibrium effect on spinodal decomposition in a binary system, Int. J. Thermodyn. 11 (2008), 21-28. (2008) 
  10. Galenko, P., Lebedev, V., 10.1016/j.physleta.2007.08.070, Phys. Lett., A 372 (2008), 985-989. (2008) Zbl1217.82029DOI10.1016/j.physleta.2007.08.070
  11. Gatti, S., Grasselli, M., Miranville, A., Pata, V., 10.1016/j.jmaa.2005.03.029, J. Math. Anal. Appl. 312 (2005), 230-247. (2005) Zbl1160.35518MR2175216DOI10.1016/j.jmaa.2005.03.029
  12. Grasselli, M., Petzeltová, H., Schimperna, G., 10.1016/j.jde.2007.05.003, J. Differ. Equations 239 (2007), 38-60. (2007) Zbl1129.35017MR2341548DOI10.1016/j.jde.2007.05.003
  13. Grasselli, M., Schimperna, G., Segatti, A., Zelik, S., 10.1007/s00028-009-0017-7, J. Evol. Equ. 9 (2009), 371-404. (2009) Zbl1239.35160MR2511557DOI10.1007/s00028-009-0017-7
  14. Grasselli, M., Schimperna, G., Zelik, S., 10.1080/03605300802608247, Commun. Partial Differ. Equations 34 (2009), 137-170. (2009) Zbl1173.35086MR2512857DOI10.1080/03605300802608247
  15. Grasselli, M., Schimperna, G., Zelik, S., 10.1088/0951-7715/23/3/016, Nonlinearity 23 (2010), 707-737. (2010) Zbl1198.35038MR2593916DOI10.1088/0951-7715/23/3/016
  16. Li, T. T., Chen, Y. M., The Nonlinear Evolution Euqation, Scientific Press, Beijing (1989), Chinese. (1989) 
  17. Wang, W., Wang, W., 10.1016/j.jmaa.2009.12.013, J. Math. Anal. Appl. 366 (2010), 226-241. (2010) Zbl1184.35218MR2593648DOI10.1016/j.jmaa.2009.12.013
  18. Wang, W., Wu, Z., 10.1016/j.jmaa.2011.09.016, J. Math. Anal. Appl. 387 (2012), 349-358. (2012) Zbl1229.35252MR2845755DOI10.1016/j.jmaa.2011.09.016
  19. Zheng, S., Milani, A., 10.1016/j.na.2004.03.023, Nonlinear Anal., Theory Methods Appl., Ser. A 57 (2004), 843-877. (2004) Zbl1055.35028MR2067737DOI10.1016/j.na.2004.03.023
  20. Zheng, S., Milani, A., 10.1016/j.jde.2004.08.026, J. Differ. Equations 209 (2005), 101-139. (2005) Zbl1063.35041MR2107470DOI10.1016/j.jde.2004.08.026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.