Global existence and decay estimate of solution for Cahn-Hilliard equation with inertial term
Applications of Mathematics (2021)
- Volume: 66, Issue: 4, page 583-597
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topXu, Hongmei, and Li, Qi. "Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term." Applications of Mathematics 66.4 (2021): 583-597. <http://eudml.org/doc/297609>.
@article{Xu2021,
abstract = {The Cauchy problem of the Cahn-Hilliard equation with inertial term in multi space dimension is considered. Based on detailed analysis of Green’s function, using fixed-point theorem, we get the global existence in time of classical solution with large initial data. Furthermore, we get $L_p$ decay rate of the solution.},
author = {Xu, Hongmei, Li, Qi},
journal = {Applications of Mathematics},
keywords = {Cahn-Hilliard equation with inertial term; large initial data; classical solution; $L_p$ decay},
language = {eng},
number = {4},
pages = {583-597},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term},
url = {http://eudml.org/doc/297609},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Xu, Hongmei
AU - Li, Qi
TI - Global existence and $L_p$ decay estimate of solution for Cahn-Hilliard equation with inertial term
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 583
EP - 597
AB - The Cauchy problem of the Cahn-Hilliard equation with inertial term in multi space dimension is considered. Based on detailed analysis of Green’s function, using fixed-point theorem, we get the global existence in time of classical solution with large initial data. Furthermore, we get $L_p$ decay rate of the solution.
LA - eng
KW - Cahn-Hilliard equation with inertial term; large initial data; classical solution; $L_p$ decay
UR - http://eudml.org/doc/297609
ER -
References
top- Caffarelli, L. A., Muler, N. E., 10.1007/BF00376814, Arch. Ration. Mech. Anal. 133 (1995), 129-144. (1995) Zbl0851.35010MR1367359DOI10.1007/BF00376814
- Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 28 (1958), 258-267. (1958) Zbl1431.35066DOI10.1063/1.1744102
- Deng, S., Wang, W., Zhao, H., 10.1016/j.nonrwa.2010.05.024, Nonlinear Anal., Real World Appl. 11 (2010), 4404-4414. (2010) Zbl1202.35138MR2683885DOI10.1016/j.nonrwa.2010.05.024
- Efendiev, M., Miranville, A., Zelik, S., 10.1002/mana.200310186, Math. Nachr. 272 (2004), 11-31. (2004) Zbl1046.37047MR2079758DOI10.1002/mana.200310186
- Elliott, C. M., Zheng, S., 10.1007/BF00251803, Arch. Ration. Mech. Anal. 96 (1986), 339-357. (1986) Zbl0624.35048MR0855754DOI10.1007/BF00251803
- Galenko, P., 10.1016/S0375-9601(01)00489-3, Phys. Lett., A 287 (2001), 190-197. (2001) DOI10.1016/S0375-9601(01)00489-3
- Galenko, P., Jou, D., 10.1103/PhysRevE.71.046125, Phys. Rev. E 71 (2005), Article ID 046125. (2005) DOI10.1103/PhysRevE.71.046125
- Galenko, P., Lebedev, V., 10.1080/09500830701395127, Philos. Mag. Lett. 87 (2007), 821-827. (2007) DOI10.1080/09500830701395127
- Galenko, P., Lebedev, V., Local nonequilibrium effect on spinodal decomposition in a binary system, Int. J. Thermodyn. 11 (2008), 21-28. (2008)
- Galenko, P., Lebedev, V., 10.1016/j.physleta.2007.08.070, Phys. Lett., A 372 (2008), 985-989. (2008) Zbl1217.82029DOI10.1016/j.physleta.2007.08.070
- Gatti, S., Grasselli, M., Miranville, A., Pata, V., 10.1016/j.jmaa.2005.03.029, J. Math. Anal. Appl. 312 (2005), 230-247. (2005) Zbl1160.35518MR2175216DOI10.1016/j.jmaa.2005.03.029
- Grasselli, M., Petzeltová, H., Schimperna, G., 10.1016/j.jde.2007.05.003, J. Differ. Equations 239 (2007), 38-60. (2007) Zbl1129.35017MR2341548DOI10.1016/j.jde.2007.05.003
- Grasselli, M., Schimperna, G., Segatti, A., Zelik, S., 10.1007/s00028-009-0017-7, J. Evol. Equ. 9 (2009), 371-404. (2009) Zbl1239.35160MR2511557DOI10.1007/s00028-009-0017-7
- Grasselli, M., Schimperna, G., Zelik, S., 10.1080/03605300802608247, Commun. Partial Differ. Equations 34 (2009), 137-170. (2009) Zbl1173.35086MR2512857DOI10.1080/03605300802608247
- Grasselli, M., Schimperna, G., Zelik, S., 10.1088/0951-7715/23/3/016, Nonlinearity 23 (2010), 707-737. (2010) Zbl1198.35038MR2593916DOI10.1088/0951-7715/23/3/016
- Li, T. T., Chen, Y. M., The Nonlinear Evolution Euqation, Scientific Press, Beijing (1989), Chinese. (1989)
- Wang, W., Wang, W., 10.1016/j.jmaa.2009.12.013, J. Math. Anal. Appl. 366 (2010), 226-241. (2010) Zbl1184.35218MR2593648DOI10.1016/j.jmaa.2009.12.013
- Wang, W., Wu, Z., 10.1016/j.jmaa.2011.09.016, J. Math. Anal. Appl. 387 (2012), 349-358. (2012) Zbl1229.35252MR2845755DOI10.1016/j.jmaa.2011.09.016
- Zheng, S., Milani, A., 10.1016/j.na.2004.03.023, Nonlinear Anal., Theory Methods Appl., Ser. A 57 (2004), 843-877. (2004) Zbl1055.35028MR2067737DOI10.1016/j.na.2004.03.023
- Zheng, S., Milani, A., 10.1016/j.jde.2004.08.026, J. Differ. Equations 209 (2005), 101-139. (2005) Zbl1063.35041MR2107470DOI10.1016/j.jde.2004.08.026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.