The boundedness of two classes of integral operators

Xin Wang; Ming-Sheng Liu

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 475-490
  • ISSN: 0011-4642

Abstract

top
The aim of this paper is to characterize the boundedness of two classes of integral operators from to in terms of the parameters , , , , and , , where is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).

How to cite

top

Wang, Xin, and Liu, Ming-Sheng. "The boundedness of two classes of integral operators." Czechoslovak Mathematical Journal 71.2 (2021): 475-490. <http://eudml.org/doc/297636>.

@article{Wang2021,
abstract = {The aim of this paper is to characterize the $L^p-L^q$ boundedness of two classes of integral operators from $L^p (\mathcal \{U\}, \{\rm d\} V_\alpha )$ to $L^q(\mathcal \{U\}, \{\rm d\} V_\beta )$ in terms of the parameters $a$, $b$, $c$, $p$, $q$ and $\alpha $, $\beta $, where $\mathcal \{U\}$ is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).},
author = {Wang, Xin, Liu, Ming-Sheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness},
language = {eng},
number = {2},
pages = {475-490},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The boundedness of two classes of integral operators},
url = {http://eudml.org/doc/297636},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Wang, Xin
AU - Liu, Ming-Sheng
TI - The boundedness of two classes of integral operators
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 475
EP - 490
AB - The aim of this paper is to characterize the $L^p-L^q$ boundedness of two classes of integral operators from $L^p (\mathcal {U}, {\rm d} V_\alpha )$ to $L^q(\mathcal {U}, {\rm d} V_\beta )$ in terms of the parameters $a$, $b$, $c$, $p$, $q$ and $\alpha $, $\beta $, where $\mathcal {U}$ is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).
LA - eng
KW - integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness
UR - http://eudml.org/doc/297636
ER -

References

top
  1. Furdui, O., The Fock Space and Related Bergman Type Integral Operators: PhD. Thesis, Western Michigan University, Kalamazoo (2007). (2007) MR2710271
  2. Furdui, O., 10.1007/s00020-008-1572-y, Integral Equations Oper. Theory 60 (2008), 469-483. (2008) Zbl1157.47032MR2390439DOI10.1007/s00020-008-1572-y
  3. Kures, O., Zhu, K., 10.1007/s00020-005-1411-3, Integral Equations Oper. Theory 56 (2006), 71-82. (2006) Zbl1109.47041MR2256998DOI10.1007/s00020-005-1411-3
  4. Liu, C., Liu, Y., Hu, P., Zhou, L., 10.1007/s11785-018-0785-6, Complex Anal. Oper. Theory 13 (2019), 685-701. (2019) Zbl1421.32011MR3940386DOI10.1007/s11785-018-0785-6
  5. Liu, M.-S., 10.1080/17476933.2011.603415, Complex Var. Elliptic Equ. 58 (2013), 899-908. (2013) Zbl1277.32001MR3170670DOI10.1080/17476933.2011.603415
  6. Liu, M.-S., Li, N., Yang, Y., 10.1007/s11785-015-0528-x, Complex Anal. Oper. Theory 11 (2017), 243-260. (2017) Zbl1364.32002MR3605227DOI10.1007/s11785-015-0528-x
  7. Liu, M.-S., Tang, X.-M., 10.1080/17476933.2012.662224, Complex Var. Elliptic Equ. 58 (2013), 1273-1282. (2013) Zbl1277.32003MR3170698DOI10.1080/17476933.2012.662224
  8. Liu, M.-S., Wu, F., 10.1007/s40840-017-0472-1, Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 133-151. (2019) Zbl1408.32003MR3894620DOI10.1007/s40840-017-0472-1
  9. Liu, M.-S., Wu, F., Yang, Y., 10.1007/s10473-019-0506-x, Acta Math. Sci., Ser. B, Engl. Ed. 39 (2019), 1265-1276. (2019) MR4068816DOI10.1007/s10473-019-0506-x
  10. Zhao, R., 10.1007/s00020-014-2215-0, Integral Equations Oper. Theory 82 (2015), 519-532. (2015) Zbl1319.47041MR3369311DOI10.1007/s00020-014-2215-0
  11. Zhou, L., 10.1016/S0252-9602(15)30068-0, Acta Math. Sci., Ser. B, Engl. Ed. 35 (2015), 1475-1482. (2015) Zbl1349.47078MR3413509DOI10.1016/S0252-9602(15)30068-0
  12. Zhu, K., 10.1007/0-387-27539-8, Graduate Texts in Mathematics 226. Springer, New York (2005). (2005) Zbl1067.32005MR2115155DOI10.1007/0-387-27539-8

NotesEmbed ?

top

You must be logged in to post comments.