The boundedness of two classes of integral operators

Xin Wang; Ming-Sheng Liu

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 475-490
  • ISSN: 0011-4642

Abstract

top
The aim of this paper is to characterize the L p - L q boundedness of two classes of integral operators from L p ( 𝒰 , d V α ) to L q ( 𝒰 , d V β ) in terms of the parameters a , b , c , p , q and α , β , where 𝒰 is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).

How to cite

top

Wang, Xin, and Liu, Ming-Sheng. "The boundedness of two classes of integral operators." Czechoslovak Mathematical Journal 71.2 (2021): 475-490. <http://eudml.org/doc/297636>.

@article{Wang2021,
abstract = {The aim of this paper is to characterize the $L^p-L^q$ boundedness of two classes of integral operators from $L^p (\mathcal \{U\}, \{\rm d\} V_\alpha )$ to $L^q(\mathcal \{U\}, \{\rm d\} V_\beta )$ in terms of the parameters $a$, $b$, $c$, $p$, $q$ and $\alpha $, $\beta $, where $\mathcal \{U\}$ is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).},
author = {Wang, Xin, Liu, Ming-Sheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness},
language = {eng},
number = {2},
pages = {475-490},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The boundedness of two classes of integral operators},
url = {http://eudml.org/doc/297636},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Wang, Xin
AU - Liu, Ming-Sheng
TI - The boundedness of two classes of integral operators
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 475
EP - 490
AB - The aim of this paper is to characterize the $L^p-L^q$ boundedness of two classes of integral operators from $L^p (\mathcal {U}, {\rm d} V_\alpha )$ to $L^q(\mathcal {U}, {\rm d} V_\beta )$ in terms of the parameters $a$, $b$, $c$, $p$, $q$ and $\alpha $, $\beta $, where $\mathcal {U}$ is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).
LA - eng
KW - integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness
UR - http://eudml.org/doc/297636
ER -

References

top
  1. Furdui, O., The Fock Space and Related Bergman Type Integral Operators: PhD. Thesis, Western Michigan University, Kalamazoo (2007). (2007) MR2710271
  2. Furdui, O., 10.1007/s00020-008-1572-y, Integral Equations Oper. Theory 60 (2008), 469-483. (2008) Zbl1157.47032MR2390439DOI10.1007/s00020-008-1572-y
  3. Kures, O., Zhu, K., 10.1007/s00020-005-1411-3, Integral Equations Oper. Theory 56 (2006), 71-82. (2006) Zbl1109.47041MR2256998DOI10.1007/s00020-005-1411-3
  4. Liu, C., Liu, Y., Hu, P., Zhou, L., 10.1007/s11785-018-0785-6, Complex Anal. Oper. Theory 13 (2019), 685-701. (2019) Zbl1421.32011MR3940386DOI10.1007/s11785-018-0785-6
  5. Liu, M.-S., 10.1080/17476933.2011.603415, Complex Var. Elliptic Equ. 58 (2013), 899-908. (2013) Zbl1277.32001MR3170670DOI10.1080/17476933.2011.603415
  6. Liu, M.-S., Li, N., Yang, Y., 10.1007/s11785-015-0528-x, Complex Anal. Oper. Theory 11 (2017), 243-260. (2017) Zbl1364.32002MR3605227DOI10.1007/s11785-015-0528-x
  7. Liu, M.-S., Tang, X.-M., 10.1080/17476933.2012.662224, Complex Var. Elliptic Equ. 58 (2013), 1273-1282. (2013) Zbl1277.32003MR3170698DOI10.1080/17476933.2012.662224
  8. Liu, M.-S., Wu, F., 10.1007/s40840-017-0472-1, Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 133-151. (2019) Zbl1408.32003MR3894620DOI10.1007/s40840-017-0472-1
  9. Liu, M.-S., Wu, F., Yang, Y., 10.1007/s10473-019-0506-x, Acta Math. Sci., Ser. B, Engl. Ed. 39 (2019), 1265-1276. (2019) MR4068816DOI10.1007/s10473-019-0506-x
  10. Zhao, R., 10.1007/s00020-014-2215-0, Integral Equations Oper. Theory 82 (2015), 519-532. (2015) Zbl1319.47041MR3369311DOI10.1007/s00020-014-2215-0
  11. Zhou, L., 10.1016/S0252-9602(15)30068-0, Acta Math. Sci., Ser. B, Engl. Ed. 35 (2015), 1475-1482. (2015) Zbl1349.47078MR3413509DOI10.1016/S0252-9602(15)30068-0
  12. Zhu, K., 10.1007/0-387-27539-8, Graduate Texts in Mathematics 226. Springer, New York (2005). (2005) Zbl1067.32005MR2115155DOI10.1007/0-387-27539-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.