The boundedness of two classes of integral operators
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 475-490
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Furdui, O., The Fock Space and Related Bergman Type Integral Operators: PhD. Thesis, Western Michigan University, Kalamazoo (2007). (2007) MR2710271
- Furdui, O., 10.1007/s00020-008-1572-y, Integral Equations Oper. Theory 60 (2008), 469-483. (2008) Zbl1157.47032MR2390439DOI10.1007/s00020-008-1572-y
- Kures, O., Zhu, K., 10.1007/s00020-005-1411-3, Integral Equations Oper. Theory 56 (2006), 71-82. (2006) Zbl1109.47041MR2256998DOI10.1007/s00020-005-1411-3
- Liu, C., Liu, Y., Hu, P., Zhou, L., 10.1007/s11785-018-0785-6, Complex Anal. Oper. Theory 13 (2019), 685-701. (2019) Zbl1421.32011MR3940386DOI10.1007/s11785-018-0785-6
- Liu, M.-S., 10.1080/17476933.2011.603415, Complex Var. Elliptic Equ. 58 (2013), 899-908. (2013) Zbl1277.32001MR3170670DOI10.1080/17476933.2011.603415
- Liu, M.-S., Li, N., Yang, Y., 10.1007/s11785-015-0528-x, Complex Anal. Oper. Theory 11 (2017), 243-260. (2017) Zbl1364.32002MR3605227DOI10.1007/s11785-015-0528-x
- Liu, M.-S., Tang, X.-M., 10.1080/17476933.2012.662224, Complex Var. Elliptic Equ. 58 (2013), 1273-1282. (2013) Zbl1277.32003MR3170698DOI10.1080/17476933.2012.662224
- Liu, M.-S., Wu, F., 10.1007/s40840-017-0472-1, Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 133-151. (2019) Zbl1408.32003MR3894620DOI10.1007/s40840-017-0472-1
- Liu, M.-S., Wu, F., Yang, Y., 10.1007/s10473-019-0506-x, Acta Math. Sci., Ser. B, Engl. Ed. 39 (2019), 1265-1276. (2019) MR4068816DOI10.1007/s10473-019-0506-x
- Zhao, R., 10.1007/s00020-014-2215-0, Integral Equations Oper. Theory 82 (2015), 519-532. (2015) Zbl1319.47041MR3369311DOI10.1007/s00020-014-2215-0
- Zhou, L., 10.1016/S0252-9602(15)30068-0, Acta Math. Sci., Ser. B, Engl. Ed. 35 (2015), 1475-1482. (2015) Zbl1349.47078MR3413509DOI10.1016/S0252-9602(15)30068-0
- Zhu, K., 10.1007/0-387-27539-8, Graduate Texts in Mathematics 226. Springer, New York (2005). (2005) Zbl1067.32005MR2115155DOI10.1007/0-387-27539-8