On the gaps between -binomial coefficients
Florian Luca; Sylvester Manganye
Communications in Mathematics (2021)
- Volume: 29, Issue: 3, page 431-442
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topLuca, Florian, and Manganye, Sylvester. "On the gaps between $q$-binomial coefficients." Communications in Mathematics 29.3 (2021): 431-442. <http://eudml.org/doc/297656>.
@article{Luca2021,
abstract = {In this note, we estimate the distance between two $q$-nomial coefficients $\bigl \vert \binom\{n\}\{k\}_q-\binom\{n^\{\prime \}\}\{k^\{\prime \}\}_q\bigr \vert $, where $(n,k)\ne (n^\{\prime \},k^\{\prime \})$ and $q\ge 2$ is an integer.},
author = {Luca, Florian, Manganye, Sylvester},
journal = {Communications in Mathematics},
keywords = {$q$-binomial coefficients},
language = {eng},
number = {3},
pages = {431-442},
publisher = {University of Ostrava},
title = {On the gaps between $q$-binomial coefficients},
url = {http://eudml.org/doc/297656},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Luca, Florian
AU - Manganye, Sylvester
TI - On the gaps between $q$-binomial coefficients
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 431
EP - 442
AB - In this note, we estimate the distance between two $q$-nomial coefficients $\bigl \vert \binom{n}{k}_q-\binom{n^{\prime }}{k^{\prime }}_q\bigr \vert $, where $(n,k)\ne (n^{\prime },k^{\prime })$ and $q\ge 2$ is an integer.
LA - eng
KW - $q$-binomial coefficients
UR - http://eudml.org/doc/297656
ER -
References
top- Luca, F., Marques, D., Stănică , P., 10.1016/j.jnt.2009.07.015, J. Number Theory, 130, 2010, 82-100, (2010) MR2569843DOI10.1016/j.jnt.2009.07.015
- Rosser, J. B., Schoenfeld, L., 10.1215/ijm/1255631807, Illinois J. Math., 6, 1962, 64-94, (1962) DOI10.1215/ijm/1255631807
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.