-depth on -modules and local cohomology
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 755-764
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLotfi Parsa, Morteza. "$S$-depth on $ZD$-modules and local cohomology." Czechoslovak Mathematical Journal 71.3 (2021): 755-764. <http://eudml.org/doc/297665>.
@article{LotfiParsa2021,
abstract = {Let $R$ be a Noetherian ring, and $I$ and $J$ be two ideals of $R$. Let $S$ be a Serre subcategory of the category of $R$-modules satisfying the condition $C_I$ and $M$ be a $ZD$-module. As a generalization of the $S$-$\{\rm depth\}(I, M)$ and $\{\rm depth\}(I, J, M)$, the $S$-$\{\rm depth\}$ of $(I, J)$ on $M$ is defined as $S$-$\{\rm depth\}(I, J, M)=\inf \lbrace S$-$\{\rm depth\}(\mathfrak \{a\}, M) \colon \mathfrak \{a\}\in \widetilde\{\rm W\}(I,J)\rbrace $, and some properties of this concept are investigated. The relations between $S$-$\{\rm depth\}(I, J, M)$ and $H^\{i\}_\{I,J\}(M)$ are studied, and it is proved that $S$-$\{\rm depth\}(I, J, M)=\inf \lbrace i \colon H^\{i\}_\{I,J\}(M)\notin S\rbrace $, where $S$ is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with respect to a pair of ideals coincide with ordinary local cohomology modules under these conditions. Let $\{\rm Supp\}_R H^\{i\}_\{I,J\}(M)$ be a finite subset of $\{\rm Max\}(R)$ for all $i<t$, where $M$ is an arbitrary $R$-module and $t$ is an integer. It is shown that there are distinct maximal ideals $\mathfrak \{m\}_1, \mathfrak \{m\}_2,\ldots ,\mathfrak \{m\}_k\in \{\rm W\}(I, J)$ such that $H^\{i\}_\{I,J\}(M)\cong H^\{i\}_\{\mathfrak \{m\}_1\}(M)\oplus H^\{i\}_\{\mathfrak \{m\}_2\}(M)\oplus \cdots \oplus H^\{i\}_\{\mathfrak \{m\}_k\}(M)$ for all $i<t$.},
author = {Lotfi Parsa, Morteza},
journal = {Czechoslovak Mathematical Journal},
keywords = {depth; local cohomology; Serre subcategory; $ZD$-module},
language = {eng},
number = {3},
pages = {755-764},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$S$-depth on $ZD$-modules and local cohomology},
url = {http://eudml.org/doc/297665},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Lotfi Parsa, Morteza
TI - $S$-depth on $ZD$-modules and local cohomology
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 755
EP - 764
AB - Let $R$ be a Noetherian ring, and $I$ and $J$ be two ideals of $R$. Let $S$ be a Serre subcategory of the category of $R$-modules satisfying the condition $C_I$ and $M$ be a $ZD$-module. As a generalization of the $S$-${\rm depth}(I, M)$ and ${\rm depth}(I, J, M)$, the $S$-${\rm depth}$ of $(I, J)$ on $M$ is defined as $S$-${\rm depth}(I, J, M)=\inf \lbrace S$-${\rm depth}(\mathfrak {a}, M) \colon \mathfrak {a}\in \widetilde{\rm W}(I,J)\rbrace $, and some properties of this concept are investigated. The relations between $S$-${\rm depth}(I, J, M)$ and $H^{i}_{I,J}(M)$ are studied, and it is proved that $S$-${\rm depth}(I, J, M)=\inf \lbrace i \colon H^{i}_{I,J}(M)\notin S\rbrace $, where $S$ is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with respect to a pair of ideals coincide with ordinary local cohomology modules under these conditions. Let ${\rm Supp}_R H^{i}_{I,J}(M)$ be a finite subset of ${\rm Max}(R)$ for all $i<t$, where $M$ is an arbitrary $R$-module and $t$ is an integer. It is shown that there are distinct maximal ideals $\mathfrak {m}_1, \mathfrak {m}_2,\ldots ,\mathfrak {m}_k\in {\rm W}(I, J)$ such that $H^{i}_{I,J}(M)\cong H^{i}_{\mathfrak {m}_1}(M)\oplus H^{i}_{\mathfrak {m}_2}(M)\oplus \cdots \oplus H^{i}_{\mathfrak {m}_k}(M)$ for all $i<t$.
LA - eng
KW - depth; local cohomology; Serre subcategory; $ZD$-module
UR - http://eudml.org/doc/297665
ER -
References
top- Aghapournahr, M., Ahmadi-Amoli, K., Sadeghi, M. Y., 10.22044/JAS.2015.482, J. Algebr. Syst. 3 (2015), 1-10. (2015) MR3534204DOI10.22044/JAS.2015.482
- Aghapournahr, M., Melkersson, L., 10.1016/j.jalgebra.2008.04.002, J. Algebra 320 (2008), 1275-1287. (2008) Zbl1153.13014MR2427643DOI10.1016/j.jalgebra.2008.04.002
- Asadollahi, M., Khashyarmanesh, K., Salarian, S., 10.1017/s1446788700008132, J. Aust. Math. Soc. 75 (2003), 313-324. (2003) Zbl1096.13522MR2015320DOI10.1017/s1446788700008132
- Bijan-Zadeh, M. H., 10.1112/jlms/s2-19.3.402, J. London Math. Soc., II. Ser. 19 (1979), 402-410. (1979) Zbl0404.13010MR0540052DOI10.1112/jlms/s2-19.3.402
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
- Chu, L., Wang, Q., 10.1215/kjm/1248983036, J. Math. Kyoto Univ. 49 (2009), 193-200. (2009) Zbl1174.13024MR2531134DOI10.1215/kjm/1248983036
- Divaani-Aazar, K., Esmkhani, M. A., 10.1081/agb-200063983, Commun. Algebra 33 (2005), 2857-2863. (2005) Zbl1090.13012MR2159511DOI10.1081/agb-200063983
- E. G. Evans, Jr., 10.1090/s0002-9947-1971-0272773-9, Trans. Am. Math. Soc. 155 (1971), 505-512. (1971) Zbl0216.32603MR0272773DOI10.1090/s0002-9947-1971-0272773-9
- Parsa, M. Lotfi, 10.2298/pim1920029l, Publ. Inst. Math., Nouv. Sér. 106(120) (2019), 29-37. (2019) MR4040296DOI10.2298/pim1920029l
- Parsa, M. Lotfi, Payrovi, S., 10.1142/s1005386716000341, Algebra Colloq. 23 (2016), 329-334. (2016) Zbl1344.13012MR3475055DOI10.1142/s1005386716000341
- Payrovi, S., Parsa, M. Lotfi, 10.1080/00927872.2011.631206, Commun. Algebra 41 (2013), 627-637. (2013) Zbl1263.13016MR3011786DOI10.1080/00927872.2011.631206
- Takahashi, R., Yoshino, Y., Yoshizawa, T., 10.1016/j.jpaa.2008.09.008, J. Pure Appl. Algebra 213 (2009), 582-600. (2009) Zbl1160.13013MR2483839DOI10.1016/j.jpaa.2008.09.008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.