S -depth on Z D -modules and local cohomology

Morteza Lotfi Parsa

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 3, page 755-764
  • ISSN: 0011-4642

Abstract

top
Let R be a Noetherian ring, and I and J be two ideals of R . Let S be a Serre subcategory of the category of R -modules satisfying the condition C I and M be a Z D -module. As a generalization of the S - depth ( I , M ) and depth ( I , J , M ) , the S - depth of ( I , J ) on M is defined as S - depth ( I , J , M ) = inf { S - depth ( 𝔞 , M ) : 𝔞 W ˜ ( I , J ) } , and some properties of this concept are investigated. The relations between S - depth ( I , J , M ) and H I , J i ( M ) are studied, and it is proved that S - depth ( I , J , M ) = inf { i : H I , J i ( M ) S } , where S is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with respect to a pair of ideals coincide with ordinary local cohomology modules under these conditions. Let Supp R H I , J i ( M ) be a finite subset of Max ( R ) for all i < t , where M is an arbitrary R -module and t is an integer. It is shown that there are distinct maximal ideals 𝔪 1 , 𝔪 2 , ... , 𝔪 k W ( I , J ) such that H I , J i ( M ) H 𝔪 1 i ( M ) H 𝔪 2 i ( M ) H 𝔪 k i ( M ) for all i < t .

How to cite

top

Lotfi Parsa, Morteza. "$S$-depth on $ZD$-modules and local cohomology." Czechoslovak Mathematical Journal 71.3 (2021): 755-764. <http://eudml.org/doc/297665>.

@article{LotfiParsa2021,
abstract = {Let $R$ be a Noetherian ring, and $I$ and $J$ be two ideals of $R$. Let $S$ be a Serre subcategory of the category of $R$-modules satisfying the condition $C_I$ and $M$ be a $ZD$-module. As a generalization of the $S$-$\{\rm depth\}(I, M)$ and $\{\rm depth\}(I, J, M)$, the $S$-$\{\rm depth\}$ of $(I, J)$ on $M$ is defined as $S$-$\{\rm depth\}(I, J, M)=\inf \lbrace S$-$\{\rm depth\}(\mathfrak \{a\}, M) \colon \mathfrak \{a\}\in \widetilde\{\rm W\}(I,J)\rbrace $, and some properties of this concept are investigated. The relations between $S$-$\{\rm depth\}(I, J, M)$ and $H^\{i\}_\{I,J\}(M)$ are studied, and it is proved that $S$-$\{\rm depth\}(I, J, M)=\inf \lbrace i \colon H^\{i\}_\{I,J\}(M)\notin S\rbrace $, where $S$ is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with respect to a pair of ideals coincide with ordinary local cohomology modules under these conditions. Let $\{\rm Supp\}_R H^\{i\}_\{I,J\}(M)$ be a finite subset of $\{\rm Max\}(R)$ for all $i<t$, where $M$ is an arbitrary $R$-module and $t$ is an integer. It is shown that there are distinct maximal ideals $\mathfrak \{m\}_1, \mathfrak \{m\}_2,\ldots ,\mathfrak \{m\}_k\in \{\rm W\}(I, J)$ such that $H^\{i\}_\{I,J\}(M)\cong H^\{i\}_\{\mathfrak \{m\}_1\}(M)\oplus H^\{i\}_\{\mathfrak \{m\}_2\}(M)\oplus \cdots \oplus H^\{i\}_\{\mathfrak \{m\}_k\}(M)$ for all $i<t$.},
author = {Lotfi Parsa, Morteza},
journal = {Czechoslovak Mathematical Journal},
keywords = {depth; local cohomology; Serre subcategory; $ZD$-module},
language = {eng},
number = {3},
pages = {755-764},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$S$-depth on $ZD$-modules and local cohomology},
url = {http://eudml.org/doc/297665},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Lotfi Parsa, Morteza
TI - $S$-depth on $ZD$-modules and local cohomology
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 755
EP - 764
AB - Let $R$ be a Noetherian ring, and $I$ and $J$ be two ideals of $R$. Let $S$ be a Serre subcategory of the category of $R$-modules satisfying the condition $C_I$ and $M$ be a $ZD$-module. As a generalization of the $S$-${\rm depth}(I, M)$ and ${\rm depth}(I, J, M)$, the $S$-${\rm depth}$ of $(I, J)$ on $M$ is defined as $S$-${\rm depth}(I, J, M)=\inf \lbrace S$-${\rm depth}(\mathfrak {a}, M) \colon \mathfrak {a}\in \widetilde{\rm W}(I,J)\rbrace $, and some properties of this concept are investigated. The relations between $S$-${\rm depth}(I, J, M)$ and $H^{i}_{I,J}(M)$ are studied, and it is proved that $S$-${\rm depth}(I, J, M)=\inf \lbrace i \colon H^{i}_{I,J}(M)\notin S\rbrace $, where $S$ is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with respect to a pair of ideals coincide with ordinary local cohomology modules under these conditions. Let ${\rm Supp}_R H^{i}_{I,J}(M)$ be a finite subset of ${\rm Max}(R)$ for all $i<t$, where $M$ is an arbitrary $R$-module and $t$ is an integer. It is shown that there are distinct maximal ideals $\mathfrak {m}_1, \mathfrak {m}_2,\ldots ,\mathfrak {m}_k\in {\rm W}(I, J)$ such that $H^{i}_{I,J}(M)\cong H^{i}_{\mathfrak {m}_1}(M)\oplus H^{i}_{\mathfrak {m}_2}(M)\oplus \cdots \oplus H^{i}_{\mathfrak {m}_k}(M)$ for all $i<t$.
LA - eng
KW - depth; local cohomology; Serre subcategory; $ZD$-module
UR - http://eudml.org/doc/297665
ER -

References

top
  1. Aghapournahr, M., Ahmadi-Amoli, K., Sadeghi, M. Y., 10.22044/JAS.2015.482, J. Algebr. Syst. 3 (2015), 1-10. (2015) MR3534204DOI10.22044/JAS.2015.482
  2. Aghapournahr, M., Melkersson, L., 10.1016/j.jalgebra.2008.04.002, J. Algebra 320 (2008), 1275-1287. (2008) Zbl1153.13014MR2427643DOI10.1016/j.jalgebra.2008.04.002
  3. Asadollahi, M., Khashyarmanesh, K., Salarian, S., 10.1017/s1446788700008132, J. Aust. Math. Soc. 75 (2003), 313-324. (2003) Zbl1096.13522MR2015320DOI10.1017/s1446788700008132
  4. Bijan-Zadeh, M. H., 10.1112/jlms/s2-19.3.402, J. London Math. Soc., II. Ser. 19 (1979), 402-410. (1979) Zbl0404.13010MR0540052DOI10.1112/jlms/s2-19.3.402
  5. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  6. Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
  7. Chu, L., Wang, Q., 10.1215/kjm/1248983036, J. Math. Kyoto Univ. 49 (2009), 193-200. (2009) Zbl1174.13024MR2531134DOI10.1215/kjm/1248983036
  8. Divaani-Aazar, K., Esmkhani, M. A., 10.1081/agb-200063983, Commun. Algebra 33 (2005), 2857-2863. (2005) Zbl1090.13012MR2159511DOI10.1081/agb-200063983
  9. E. G. Evans, Jr., 10.1090/s0002-9947-1971-0272773-9, Trans. Am. Math. Soc. 155 (1971), 505-512. (1971) Zbl0216.32603MR0272773DOI10.1090/s0002-9947-1971-0272773-9
  10. Parsa, M. Lotfi, 10.2298/pim1920029l, Publ. Inst. Math., Nouv. Sér. 106(120) (2019), 29-37. (2019) MR4040296DOI10.2298/pim1920029l
  11. Parsa, M. Lotfi, Payrovi, S., 10.1142/s1005386716000341, Algebra Colloq. 23 (2016), 329-334. (2016) Zbl1344.13012MR3475055DOI10.1142/s1005386716000341
  12. Payrovi, S., Parsa, M. Lotfi, 10.1080/00927872.2011.631206, Commun. Algebra 41 (2013), 627-637. (2013) Zbl1263.13016MR3011786DOI10.1080/00927872.2011.631206
  13. Takahashi, R., Yoshino, Y., Yoshizawa, T., 10.1016/j.jpaa.2008.09.008, J. Pure Appl. Algebra 213 (2009), 582-600. (2009) Zbl1160.13013MR2483839DOI10.1016/j.jpaa.2008.09.008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.