Growth conditions for the stability of a class of time-varying perturbed singular systems

Faten Ezzine; Mohamed Ali Hammami

Kybernetika (2022)

  • Volume: 58, Issue: 1, page 1-24
  • ISSN: 0023-5954

Abstract

top
In this paper, we investigate the problem of stability of linear time-varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper.

How to cite

top

Ezzine, Faten, and Hammami, Mohamed Ali. "Growth conditions for the stability of a class of time-varying perturbed singular systems." Kybernetika 58.1 (2022): 1-24. <http://eudml.org/doc/297666>.

@article{Ezzine2022,
abstract = {In this paper, we investigate the problem of stability of linear time-varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper.},
author = {Ezzine, Faten, Hammami, Mohamed Ali},
journal = {Kybernetika},
keywords = {linear time–varying singular systems; standard canonical form; consistent initial conditions; Gronwall inequalities; Lyapunov techniques; practical exponential stability},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Growth conditions for the stability of a class of time-varying perturbed singular systems},
url = {http://eudml.org/doc/297666},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Ezzine, Faten
AU - Hammami, Mohamed Ali
TI - Growth conditions for the stability of a class of time-varying perturbed singular systems
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 1
SP - 1
EP - 24
AB - In this paper, we investigate the problem of stability of linear time-varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper.
LA - eng
KW - linear time–varying singular systems; standard canonical form; consistent initial conditions; Gronwall inequalities; Lyapunov techniques; practical exponential stability
UR - http://eudml.org/doc/297666
ER -

References

top
  1. Hamed, B. Ben, Ellouze, I., Hammami, M. A., , Mediterranean J. Math. 8 (2011), 603-616. MR2860688DOI
  2. Abdallah, A. Ben, Ellouze, I., Hammami, M. A., , J. Dynamic. Control Systems 15 (2009), 45-62. MR2475660DOI
  3. Bellman, R., 10.1215/S0012-7094-43-01059-2, Duke Math. J. 10 (1943), 643-647. MR0009408DOI10.1215/S0012-7094-43-01059-2
  4. Bainov, D., Simenov, P., Integral Inequalities and Applications., Springer, Kluwer Academic Publishers, Congress, Dordrecht 1992. MR1171448
  5. Berger, T., , Int. J. Control 10 (2012), 1433-1451. MR2972709DOI
  6. Berger, T., Ilchmann, A., , Quarterly Appl. Math. 71 (2013), 69-87. MR3075536DOI
  7. Berger, T., Ilchmann, A., , Int. J. Control 86 (2013), 1060-1076. MR3226905DOI
  8. Campbell, L., Singular Systems of Differential Equations., Pitman Advanced Publishing Program, London 1980. MR0569589
  9. Campbell, S. L., Singular Systems of Differential Equations II., Pitman Advanced Publishing Program, London 1982. MR0665426
  10. Caraballo, T., Ezzine, F., Hammami, M. A., , Appl. Math. Optim. 84 (2021), 2923-2945. MR4308217DOI
  11. Caraballo, T., Ezzine, F., Hammami, M., Mchiri, L., , Stochastics Int. J. Probab. Stoch. Process. 5 (2021), 647-664. MR4270858DOI
  12. Caraballo, T., Ezzine, F., Hammami, M., , J. Engrg. Math. 130 (2021), 1-17. MR4308313DOI
  13. Dai, L., Singular Control Systems., Springer-Verlag, Berlin 1989. MR0986970
  14. Debeljkovic, D. Lj., Jovanovic, B., Drakulic, V., Singular system theory in chemical engineering theory: Stability in the sense of Lyapunov: A survey., Hemijska Industrija 6(2001), 260-272. 
  15. Dragomir, S. S., Some Gronwall Type Inequalities and Applications., Nova Science Publishers, Hauppauge 2003. MR2016992
  16. Gronwall, T. H., , Ann. Math. 20 (1919), 293-296. MR1502565DOI
  17. Kunkel, P., Mehrmann, V., Differential-Algebraic Equations Analysis and Numerical Solution., EMS Publishing House, Zurich 2006. MR2225970
  18. Luenberger, D. G., 10.1109/TAC.1977.1101502, IEEE Trans. Automat. Control 22 (1977), 310-319. MR0479482DOI10.1109/TAC.1977.1101502
  19. Luenberger, D. G., , Automatica 14 (1978), 473-480. DOI
  20. Ownes, D. H., Debeljkovic, D. Lj., , IMA J. Math. Control Inform. 2 (1985), 139-151. DOI
  21. Pham, Q. C., Tabareau, N., Slotine, J. E., , IEEE Trans. Automat. Control 54 (2009), 1285-1290. MR2514815DOI
  22. Rosenbrock, H. H., , Int. J. Control 20 (1974), 191-202. MR0424303DOI
  23. Ritt, J. F., 10.2307/1968571, Ann. Math. 36 (1935), 293-302. MR1503223DOI10.2307/1968571
  24. Vrabel, R., , Europ. J. Control 40 (2018), 80-86. MR3767584DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.