Growth conditions for the stability of a class of time-varying perturbed singular systems
Faten Ezzine; Mohamed Ali Hammami
Kybernetika (2022)
- Volume: 58, Issue: 1, page 1-24
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topEzzine, Faten, and Hammami, Mohamed Ali. "Growth conditions for the stability of a class of time-varying perturbed singular systems." Kybernetika 58.1 (2022): 1-24. <http://eudml.org/doc/297666>.
@article{Ezzine2022,
abstract = {In this paper, we investigate the problem of stability of linear time-varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper.},
author = {Ezzine, Faten, Hammami, Mohamed Ali},
journal = {Kybernetika},
keywords = {linear time–varying singular systems; standard canonical form; consistent initial conditions; Gronwall inequalities; Lyapunov techniques; practical exponential stability},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Growth conditions for the stability of a class of time-varying perturbed singular systems},
url = {http://eudml.org/doc/297666},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Ezzine, Faten
AU - Hammami, Mohamed Ali
TI - Growth conditions for the stability of a class of time-varying perturbed singular systems
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 1
SP - 1
EP - 24
AB - In this paper, we investigate the problem of stability of linear time-varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper.
LA - eng
KW - linear time–varying singular systems; standard canonical form; consistent initial conditions; Gronwall inequalities; Lyapunov techniques; practical exponential stability
UR - http://eudml.org/doc/297666
ER -
References
top- Hamed, B. Ben, Ellouze, I., Hammami, M. A., , Mediterranean J. Math. 8 (2011), 603-616. MR2860688DOI
- Abdallah, A. Ben, Ellouze, I., Hammami, M. A., , J. Dynamic. Control Systems 15 (2009), 45-62. MR2475660DOI
- Bellman, R., 10.1215/S0012-7094-43-01059-2, Duke Math. J. 10 (1943), 643-647. MR0009408DOI10.1215/S0012-7094-43-01059-2
- Bainov, D., Simenov, P., Integral Inequalities and Applications., Springer, Kluwer Academic Publishers, Congress, Dordrecht 1992. MR1171448
- Berger, T., , Int. J. Control 10 (2012), 1433-1451. MR2972709DOI
- Berger, T., Ilchmann, A., , Quarterly Appl. Math. 71 (2013), 69-87. MR3075536DOI
- Berger, T., Ilchmann, A., , Int. J. Control 86 (2013), 1060-1076. MR3226905DOI
- Campbell, L., Singular Systems of Differential Equations., Pitman Advanced Publishing Program, London 1980. MR0569589
- Campbell, S. L., Singular Systems of Differential Equations II., Pitman Advanced Publishing Program, London 1982. MR0665426
- Caraballo, T., Ezzine, F., Hammami, M. A., , Appl. Math. Optim. 84 (2021), 2923-2945. MR4308217DOI
- Caraballo, T., Ezzine, F., Hammami, M., Mchiri, L., , Stochastics Int. J. Probab. Stoch. Process. 5 (2021), 647-664. MR4270858DOI
- Caraballo, T., Ezzine, F., Hammami, M., , J. Engrg. Math. 130 (2021), 1-17. MR4308313DOI
- Dai, L., Singular Control Systems., Springer-Verlag, Berlin 1989. MR0986970
- Debeljkovic, D. Lj., Jovanovic, B., Drakulic, V., Singular system theory in chemical engineering theory: Stability in the sense of Lyapunov: A survey., Hemijska Industrija 6(2001), 260-272.
- Dragomir, S. S., Some Gronwall Type Inequalities and Applications., Nova Science Publishers, Hauppauge 2003. MR2016992
- Gronwall, T. H., , Ann. Math. 20 (1919), 293-296. MR1502565DOI
- Kunkel, P., Mehrmann, V., Differential-Algebraic Equations Analysis and Numerical Solution., EMS Publishing House, Zurich 2006. MR2225970
- Luenberger, D. G., 10.1109/TAC.1977.1101502, IEEE Trans. Automat. Control 22 (1977), 310-319. MR0479482DOI10.1109/TAC.1977.1101502
- Luenberger, D. G., , Automatica 14 (1978), 473-480. DOI
- Ownes, D. H., Debeljkovic, D. Lj., , IMA J. Math. Control Inform. 2 (1985), 139-151. DOI
- Pham, Q. C., Tabareau, N., Slotine, J. E., , IEEE Trans. Automat. Control 54 (2009), 1285-1290. MR2514815DOI
- Rosenbrock, H. H., , Int. J. Control 20 (1974), 191-202. MR0424303DOI
- Ritt, J. F., 10.2307/1968571, Ann. Math. 36 (1935), 293-302. MR1503223DOI10.2307/1968571
- Vrabel, R., , Europ. J. Control 40 (2018), 80-86. MR3767584DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.