5-dissections and sign patterns of Ramanujan's parameter and its companion
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1115-1128
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChern, Shane, and Tang, Dazhao. "5-dissections and sign patterns of Ramanujan's parameter and its companion." Czechoslovak Mathematical Journal 71.4 (2021): 1115-1128. <http://eudml.org/doc/297676>.
@article{Chern2021,
abstract = {In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction $R(q)$ and its reciprocal. We obtain the 5-dissections for functions $R(q)R(q^2)^2$ and $R(q)^2/R(q^2)$, which are essentially Ramanujan’s parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.},
author = {Chern, Shane, Tang, Dazhao},
journal = {Czechoslovak Mathematical Journal},
keywords = {5-dissection; sign pattern; Ramanujan's parameter},
language = {eng},
number = {4},
pages = {1115-1128},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {5-dissections and sign patterns of Ramanujan's parameter and its companion},
url = {http://eudml.org/doc/297676},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Chern, Shane
AU - Tang, Dazhao
TI - 5-dissections and sign patterns of Ramanujan's parameter and its companion
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1115
EP - 1128
AB - In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction $R(q)$ and its reciprocal. We obtain the 5-dissections for functions $R(q)R(q^2)^2$ and $R(q)^2/R(q^2)$, which are essentially Ramanujan’s parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.
LA - eng
KW - 5-dissection; sign pattern; Ramanujan's parameter
UR - http://eudml.org/doc/297676
ER -
References
top- Andrews, G. E., 10.1016/0001-8708(81)90015-3, Adv. Math. 41 (1981), 186-208 9999DOI99999 10.1016/0001-8708(81)90015-3 . (1981) Zbl0477.33009MR0625893DOI10.1016/0001-8708(81)90015-3
- Andrews, G. E., Berndt, B. C., 10.1007/b13290, Springer, New York (2005). (2005) Zbl1075.11001MR2135178DOI10.1007/b13290
- Chern, S., Tang, D., 10.1017/S0004972720000271, Bull. Aust. Math. Soc. 102 (2020), 387-398. (2020) Zbl07282365MR4176682DOI10.1017/S0004972720000271
- Cooper, S., 10.1007/s11139-009-9198-5, Ramanujan J. 20 (2009), 311-328. (2009) Zbl1239.11051MR2574777DOI10.1007/s11139-009-9198-5
- Cooper, S., Level 10 analogues of Ramanujan’s series for , J. Ramanujan Math. Soc. 27 (2012), 59-76. (2012) Zbl1282.11032MR2933486
- Cooper, S., 10.1007/978-3-319-56172-1, Springer, Cham (2017). (2017) Zbl1428.11001MR3675178DOI10.1007/978-3-319-56172-1
- Dou, D. Q. J., Xiao, J., 10.1007/s11139-019-00200-w, (to appear) in Ramanujan J. DOI10.1007/s11139-019-00200-w
- Frye, J., Garvan, F., 10.1007/978-3-030-04480-0_10, Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Texts and Monographs in Symbolic Computation. Springer, Cham (2019), 195-258. (2019) MR3889559DOI10.1007/978-3-030-04480-0_10
- Garvan, F., A -product tutorial for a -series MAPLE package, Sémin. Lothar. Comb. 42 (1999), Article ID B42d, 27 pages. (1999) Zbl1010.11072MR1701583
- Gugg, C., 10.1007/s11139-008-9121-5, Ramanujan J. 18 (2009), 183-207. (2009) Zbl1193.33230MR2475936DOI10.1007/s11139-008-9121-5
- Hirschhorn, M. D., 10.1023/A:1009789012006, Ramanujan J. 2 (1998), 521-527. (1998) Zbl0924.11005MR1665326DOI10.1023/A:1009789012006
- Hirschhorn, M. D., 10.1007/978-3-319-57762-3, Developments in Mathematics 49. Springer, Cham (2017). (2017) Zbl06722024MR3699428DOI10.1007/978-3-319-57762-3
- Kang, S.-Y., 10.1023/A:1009869426750, Ramanujan J. 3 (1999), 91-111. (1999) Zbl0930.11025MR1687021DOI10.1023/A:1009869426750
- Raghavan, S., Rangachari, S. S., On Ramanujan's elliptic integrals and modular identities, Number Theory and Related Topics Tata Institute of Fundamental Research Studies in Mathematics 12. Oxford University Press, Oxford (1989), 119-149. (1989) Zbl0748.33013MR1441328
- Ramanujan, S., 10.1007/978-3-662-30224-8, Tata Institute of Fundamental Research, Bombay (1957). (1957) Zbl0138.24201MR0099904DOI10.1007/978-3-662-30224-8
- Ramanujan, S., The Lost Notebook and Other Unpublished Papers, Springer, Berlin; Narosa Publishing House, New Delhi (1988). (1988) Zbl0639.01023MR0947735
- Richmond, B., Szekeres, G., The Taylor coefficients of certain infinite products, Acta Sci. Math. 40 (1978), 347-369. (1978) Zbl0397.10046MR0515217
- Rogers, L. J., 10.1112/plms/s1-25.1.318, Proc. Lond. Math. Soc. 25 (1894), 318-343. (1894) MR1576348DOI10.1112/plms/s1-25.1.318
- Tang, D., 10.1007/s11139-020-00340-4, (to appear) in Ramanujan J. DOI10.1007/s11139-020-00340-4
- Tang, D., Xia, E. X. W., 10.1007/s11139-019-00187-4, Ramanujan J. 53 (2020), 705-724. (2020) MR4173465DOI10.1007/s11139-019-00187-4
- Xia, E. X. W., Zhao, A. X. H., 10.1080/10586458.2020.1712565, (to appear) in Exp. Math. DOI10.1080/10586458.2020.1712565
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.