5-dissections and sign patterns of Ramanujan's parameter and its companion

Shane Chern; Dazhao Tang

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 1115-1128
  • ISSN: 0011-4642

Abstract

top
In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction R ( q ) and its reciprocal. We obtain the 5-dissections for functions R ( q ) R ( q 2 ) 2 and R ( q ) 2 / R ( q 2 ) , which are essentially Ramanujan’s parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.

How to cite

top

Chern, Shane, and Tang, Dazhao. "5-dissections and sign patterns of Ramanujan's parameter and its companion." Czechoslovak Mathematical Journal 71.4 (2021): 1115-1128. <http://eudml.org/doc/297676>.

@article{Chern2021,
abstract = {In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction $R(q)$ and its reciprocal. We obtain the 5-dissections for functions $R(q)R(q^2)^2$ and $R(q)^2/R(q^2)$, which are essentially Ramanujan’s parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.},
author = {Chern, Shane, Tang, Dazhao},
journal = {Czechoslovak Mathematical Journal},
keywords = {5-dissection; sign pattern; Ramanujan's parameter},
language = {eng},
number = {4},
pages = {1115-1128},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {5-dissections and sign patterns of Ramanujan's parameter and its companion},
url = {http://eudml.org/doc/297676},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Chern, Shane
AU - Tang, Dazhao
TI - 5-dissections and sign patterns of Ramanujan's parameter and its companion
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1115
EP - 1128
AB - In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction $R(q)$ and its reciprocal. We obtain the 5-dissections for functions $R(q)R(q^2)^2$ and $R(q)^2/R(q^2)$, which are essentially Ramanujan’s parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.
LA - eng
KW - 5-dissection; sign pattern; Ramanujan's parameter
UR - http://eudml.org/doc/297676
ER -

References

top
  1. Andrews, G. E., 10.1016/0001-8708(81)90015-3, Adv. Math. 41 (1981), 186-208 9999DOI99999 10.1016/0001-8708(81)90015-3 . (1981) Zbl0477.33009MR0625893DOI10.1016/0001-8708(81)90015-3
  2. Andrews, G. E., Berndt, B. C., 10.1007/b13290, Springer, New York (2005). (2005) Zbl1075.11001MR2135178DOI10.1007/b13290
  3. Chern, S., Tang, D., 10.1017/S0004972720000271, Bull. Aust. Math. Soc. 102 (2020), 387-398. (2020) Zbl07282365MR4176682DOI10.1017/S0004972720000271
  4. Cooper, S., 10.1007/s11139-009-9198-5, Ramanujan J. 20 (2009), 311-328. (2009) Zbl1239.11051MR2574777DOI10.1007/s11139-009-9198-5
  5. Cooper, S., Level 10 analogues of Ramanujan’s series for 1 / π , J. Ramanujan Math. Soc. 27 (2012), 59-76. (2012) Zbl1282.11032MR2933486
  6. Cooper, S., 10.1007/978-3-319-56172-1, Springer, Cham (2017). (2017) Zbl1428.11001MR3675178DOI10.1007/978-3-319-56172-1
  7. Dou, D. Q. J., Xiao, J., 10.1007/s11139-019-00200-w, (to appear) in Ramanujan J. DOI10.1007/s11139-019-00200-w
  8. Frye, J., Garvan, F., 10.1007/978-3-030-04480-0_10, Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Texts and Monographs in Symbolic Computation. Springer, Cham (2019), 195-258. (2019) MR3889559DOI10.1007/978-3-030-04480-0_10
  9. Garvan, F., A q -product tutorial for a q -series MAPLE package, Sémin. Lothar. Comb. 42 (1999), Article ID B42d, 27 pages. (1999) Zbl1010.11072MR1701583
  10. Gugg, C., 10.1007/s11139-008-9121-5, Ramanujan J. 18 (2009), 183-207. (2009) Zbl1193.33230MR2475936DOI10.1007/s11139-008-9121-5
  11. Hirschhorn, M. D., 10.1023/A:1009789012006, Ramanujan J. 2 (1998), 521-527. (1998) Zbl0924.11005MR1665326DOI10.1023/A:1009789012006
  12. Hirschhorn, M. D., 10.1007/978-3-319-57762-3, Developments in Mathematics 49. Springer, Cham (2017). (2017) Zbl06722024MR3699428DOI10.1007/978-3-319-57762-3
  13. Kang, S.-Y., 10.1023/A:1009869426750, Ramanujan J. 3 (1999), 91-111. (1999) Zbl0930.11025MR1687021DOI10.1023/A:1009869426750
  14. Raghavan, S., Rangachari, S. S., On Ramanujan's elliptic integrals and modular identities, Number Theory and Related Topics Tata Institute of Fundamental Research Studies in Mathematics 12. Oxford University Press, Oxford (1989), 119-149. (1989) Zbl0748.33013MR1441328
  15. Ramanujan, S., 10.1007/978-3-662-30224-8, Tata Institute of Fundamental Research, Bombay (1957). (1957) Zbl0138.24201MR0099904DOI10.1007/978-3-662-30224-8
  16. Ramanujan, S., The Lost Notebook and Other Unpublished Papers, Springer, Berlin; Narosa Publishing House, New Delhi (1988). (1988) Zbl0639.01023MR0947735
  17. Richmond, B., Szekeres, G., The Taylor coefficients of certain infinite products, Acta Sci. Math. 40 (1978), 347-369. (1978) Zbl0397.10046MR0515217
  18. Rogers, L. J., 10.1112/plms/s1-25.1.318, Proc. Lond. Math. Soc. 25 (1894), 318-343. (1894) MR1576348DOI10.1112/plms/s1-25.1.318
  19. Tang, D., 10.1007/s11139-020-00340-4, (to appear) in Ramanujan J. DOI10.1007/s11139-020-00340-4
  20. Tang, D., Xia, E. X. W., 10.1007/s11139-019-00187-4, Ramanujan J. 53 (2020), 705-724. (2020) MR4173465DOI10.1007/s11139-019-00187-4
  21. Xia, E. X. W., Zhao, A. X. H., 10.1080/10586458.2020.1712565, (to appear) in Exp. Math. DOI10.1080/10586458.2020.1712565

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.