Output feedback H control of networked control systems based on two channel event-triggered mechanisms

Yanjun Shen; Zhenguo Li; Gang Yu

Kybernetika (2021)

  • Issue: 1, page 118-140
  • ISSN: 0023-5954

Abstract

top
In this paper, we study dynamical output feedback H control for networked control systems (NCSs) based on two channel event-triggered mechanisms, which are proposed on both sides of the sensor and the controller. The output feedback H controller is constructed by taking random network-induced delays into consideration without data buffer units. The controlled plant and the output feedback controller are updated immediately by the sampled input and the sampled output, respectively. By using the approaches of time delay and interval decomposition, linear matrix inequality (LMI) based sufficient conditions are presented to guarantee that the closed-loop system satisfies H performance. Finally, we provide numerical simulations to illustrate effectiveness of the proposed method.

How to cite

top

Shen, Yanjun, Li, Zhenguo, and Yu, Gang. "Output feedback $H_\infty $ control of networked control systems based on two channel event-triggered mechanisms." Kybernetika (2021): 118-140. <http://eudml.org/doc/297685>.

@article{Shen2021,
abstract = {In this paper, we study dynamical output feedback $H_\infty $ control for networked control systems (NCSs) based on two channel event-triggered mechanisms, which are proposed on both sides of the sensor and the controller. The output feedback $H_\infty $ controller is constructed by taking random network-induced delays into consideration without data buffer units. The controlled plant and the output feedback controller are updated immediately by the sampled input and the sampled output, respectively. By using the approaches of time delay and interval decomposition, linear matrix inequality (LMI) based sufficient conditions are presented to guarantee that the closed-loop system satisfies $H_\infty $ performance. Finally, we provide numerical simulations to illustrate effectiveness of the proposed method.},
author = {Shen, Yanjun, Li, Zhenguo, Yu, Gang},
journal = {Kybernetika},
keywords = {output feedback $H_\infty $ control; event-triggered mechanism; interval decomposition; NCSs; LMI},
language = {eng},
number = {1},
pages = {118-140},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Output feedback $H_\infty $ control of networked control systems based on two channel event-triggered mechanisms},
url = {http://eudml.org/doc/297685},
year = {2021},
}

TY - JOUR
AU - Shen, Yanjun
AU - Li, Zhenguo
AU - Yu, Gang
TI - Output feedback $H_\infty $ control of networked control systems based on two channel event-triggered mechanisms
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 118
EP - 140
AB - In this paper, we study dynamical output feedback $H_\infty $ control for networked control systems (NCSs) based on two channel event-triggered mechanisms, which are proposed on both sides of the sensor and the controller. The output feedback $H_\infty $ controller is constructed by taking random network-induced delays into consideration without data buffer units. The controlled plant and the output feedback controller are updated immediately by the sampled input and the sampled output, respectively. By using the approaches of time delay and interval decomposition, linear matrix inequality (LMI) based sufficient conditions are presented to guarantee that the closed-loop system satisfies $H_\infty $ performance. Finally, we provide numerical simulations to illustrate effectiveness of the proposed method.
LA - eng
KW - output feedback $H_\infty $ control; event-triggered mechanism; interval decomposition; NCSs; LMI
UR - http://eudml.org/doc/297685
ER -

References

top
  1. Boyd, S., Linear Matrix Inequality in Systems and Control Theory., SIAM, Philadelphia 1994. MR1284712
  2. Chen, P., Fei, M. R., , Fuzzy Sets Systems 212 (2013), 97-109. MR2996153DOI
  3. Chen, P., Jin, Z., , IET Control Theory Appl. 9 (2015), 1384-1391. MR3202366DOI
  4. Chen, P., Jin, Z., , IEEE Trans. Power Systems 31 (2016), 3309-3317. DOI
  5. Chen, P., Yang, T., , Automatica 49 (2013), 1326-1332. MR3044010DOI
  6. Ding, L., Han, Q., Zhang, X., , IEEE Trans. Industr. Inform. 15 (2019), 3910-3922. DOI
  7. Donkers, M., Heemels, W., 10.1109/TAC.2011.2174696, IEEE Trans. Automat. Control 57 (2012), 1362-1376. MR2926730DOI10.1109/TAC.2011.2174696
  8. Gao, H., Meng, X., Chen, T., , IEEE Trans. Automat. Control 53 (2008), 2142-2148. MR2459587DOI
  9. Ge, X., Yang., F., Han, Q., , Inform Sci. 380 (2017), 117-131. DOI
  10. Gu, K., An integral inequality in the stability problem of time-delay systems., In: Proc. 39th IEEE Conference on Decision and Control. 3 (2000), pp. 2805-2810. 
  11. Han, Q., , Automatica 41 (2005), 2171-2176. MR2174815DOI
  12. Han, Q., , Automatica 45 (2009), 517-524. Zbl1158.93385MR2527352DOI
  13. Hu, S., Yue, D., , Int. J. Robust Nonlinear Control 23 (2013), 1277-1300. MR3070832DOI
  14. Li, F., Gao, L., al, et, , Int. J. Control Automat. Systems 16 (2018), 108-119. DOI
  15. Liu, K., Fridman, E., Johansson, K., , Automatica 59 (2015), 248-255. MR3371604DOI
  16. Meng, X., Chen, T., , Int. J. Control 87 (2014), 777-786. MR3177108DOI
  17. Qiu, J., Gao, H., Ding, S., , IEEE Trans. Industr. Electron. 63 (2016), 1207-1217. DOI
  18. Shen, Y., Li, F., Zhang, D., Liu, Y., , Int. J. Robust Nonlinear Control 29 (2018), 166-179. MR3886115DOI
  19. Walsh, G., Ye, H., 10.1109/37.898792, IEEE Control Systems 21 (2001), 57-65. DOI10.1109/37.898792
  20. Wang, R., Jing, H., al, J. Wang et, , Neurocomputing 214 (2016), 409-419. DOI
  21. Wang, M., al, J. Qiu et, , IEEE Trans. Cybernet. 46 (2015), 3145-3156. DOI
  22. Wang, Z., al, F. Yang et, , IEEE Trans. Syst. Man Cybernet. B Cybernet. 37 (2007), 916-924. DOI
  23. Wang, H., Ying, Y., Lu, R., Xue, A., , Inform. Sci. 329 (2016), 540-551. DOI
  24. Yu, H., Antsaklis, P. J., , Automatica 49 (2013), 30-38. MR2999945DOI
  25. Yue, D., Han, Q., Chen, P., , IEEE Trans. Circuits Syst. II: Exp. Briefs 51 (2004), 640-644. DOI
  26. Yue, D., Tian, E., Han, Q., , IEEE Trans. Automat. Control 58 (2013), 475-481. MR3023940DOI
  27. Zha, L., Fang, J., Liu, J., , Neurocomputing 197 (2016), 45-52. DOI
  28. al., X. Zhang et, , IEEE/CAA J. Automat. Sinica 7 (2020), 1-17. MR4058068DOI
  29. Zhang, L., Gao, H., Kaynak, O., , IEEE Trans. Ind. Inform. 9 (2012), 403-416. DOI
  30. Zhang, X., Han, Q., , IET Control Theory Appl. 8 (2014), 226-234. MR3202366DOI
  31. Zhang, D., Han, Q., J, X., , Fuzzy Sets Systems 273 (2015), 26-48. MR3347269DOI
  32. Zhang, X., Han, Q., Yu, X., , IEEE Trans. Ind. Inform. 12 (2016), 1740-1752. MR3588201DOI
  33. Zhang, D., Han, Q., Zhang, X., , IEEE Trans. Cybernet. 50 (2020), 2462-2474. DOI
  34. Zhang, W., Li, Y., , Automatica 44 (2008), 3206-3210. MR2531428DOI
  35. Zhang, D., Shi, P., al, Q. Wang et, , ISA Trans. 66 (2016), 376-392. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.