Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces

Yan Tang; Ratthaprom Promkam; Prasit Cholamjiak; Pongsakorn Sunthrayuth

Applications of Mathematics (2022)

  • Volume: 67, Issue: 2, page 129-152
  • ISSN: 0862-7940

Abstract

top
The aim of this paper is to propose two modified forward-backward splitting algorithms for zeros of the sum of a maximal monotone operator and a Bregman inverse strongly monotone operator in reflexive Banach spaces. We prove weak and strong convergence theorems of the generated sequences by the proposed methods under some suitable conditions. We apply our results to study the variational inequality problem and the equilibrium problem. Finally, a numerical example is given to illustrate the proposed methods. The results presented in this paper improve and generalize many known results in recent literature.

How to cite

top

Tang, Yan, et al. "Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces." Applications of Mathematics 67.2 (2022): 129-152. <http://eudml.org/doc/297688>.

@article{Tang2022,
abstract = {The aim of this paper is to propose two modified forward-backward splitting algorithms for zeros of the sum of a maximal monotone operator and a Bregman inverse strongly monotone operator in reflexive Banach spaces. We prove weak and strong convergence theorems of the generated sequences by the proposed methods under some suitable conditions. We apply our results to study the variational inequality problem and the equilibrium problem. Finally, a numerical example is given to illustrate the proposed methods. The results presented in this paper improve and generalize many known results in recent literature.},
author = {Tang, Yan, Promkam, Ratthaprom, Cholamjiak, Prasit, Sunthrayuth, Pongsakorn},
journal = {Applications of Mathematics},
keywords = {maximal operator; Bregman distance; reflexive Banach space; weak convergence; strong convergence},
language = {eng},
number = {2},
pages = {129-152},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces},
url = {http://eudml.org/doc/297688},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Tang, Yan
AU - Promkam, Ratthaprom
AU - Cholamjiak, Prasit
AU - Sunthrayuth, Pongsakorn
TI - Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 129
EP - 152
AB - The aim of this paper is to propose two modified forward-backward splitting algorithms for zeros of the sum of a maximal monotone operator and a Bregman inverse strongly monotone operator in reflexive Banach spaces. We prove weak and strong convergence theorems of the generated sequences by the proposed methods under some suitable conditions. We apply our results to study the variational inequality problem and the equilibrium problem. Finally, a numerical example is given to illustrate the proposed methods. The results presented in this paper improve and generalize many known results in recent literature.
LA - eng
KW - maximal operator; Bregman distance; reflexive Banach space; weak convergence; strong convergence
UR - http://eudml.org/doc/297688
ER -

References

top
  1. Agarwal, R. P., O'Regan, D., Sahu, D. R., 10.1007/978-0-387-75818-3, Topological Fixed Point Theory and Its Applications 6. Springer, New York (2009). (2009) Zbl1176.47037MR2508013DOI10.1007/978-0-387-75818-3
  2. Alber, Y. I., Generalized projection operators in Banach spaces: Properties and applications, Funct. Differ. Equ. 1 (1993), 1-21. (1993) Zbl0882.47046MR1297965
  3. Alber, Y. I., Metric and generalized projection operators in Banach spaces: Properties and applications, Theory and Applications of Nonlinear Operator of Accretive and Monotone Type Lecture Notes in Pure and Applied Mathematics 178. Marcel Dekker, New York (1996), 15-50. (1996) Zbl0883.47083MR1386667
  4. Barbu, V., Precupanu, T., 10.1007/978-94-007-2247-7, Springer Monographs in Mathematics. Springer, Dordrecht (2012). (2012) Zbl1244.49001MR3025420DOI10.1007/978-94-007-2247-7
  5. Bauschke, H. H., Borwein, J. M., Combettes, P. L., 10.1142/S0219199701000524, Commun. Contemp. Math. 3 (2001), 615-647. (2001) Zbl1032.49025MR1869107DOI10.1142/S0219199701000524
  6. Bauschke, H. H., Wang, X., Yao, L., General resolvents for monotone operators: Characterization and extension, Biomedical Mathematics: Promising Directions in Imagine, Therapy Planning and Inverse Problem (Huangguoshu 2008) Medical Physics Publishing, Madison (2010), 57-74 Y. Censor, M. Jiang, G. Wang. (2010) 
  7. Beck, A., 10.1137/1.9781611974997, MOS-SIAM Series on Optimization 25. SIAM, Philadelphia (2017). (2017) Zbl1384.65033MR3719240DOI10.1137/1.9781611974997
  8. Bertsekas, D. P., Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical Methods, Athena Scientific, Belmont (1997). (1997) Zbl0743.65107MR3587745
  9. Bonnans, J. F., Shapiro, A., 10.1007/978-1-4612-1394-9, Springer Series in Operations Research. Springer, New York (2000). (2000) Zbl0966.49001MR1756264DOI10.1007/978-1-4612-1394-9
  10. Borwein, J. M., Reich, S., Sabach, S., A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept, J. Nonlinear Convex Anal. 12 (2011), 161-184. (2011) Zbl1221.26019MR2816416
  11. Bregman, L. M., 10.1016/0041-5553(67)90040-7, U.S.S.R. Comput. Math. Math. Phys. 7 (1967), 200-217 translation from Zh. Vychisl. Mat. Mat. Fiz. 7 1967 620-631. (1967) Zbl0186.23807MR0215617DOI10.1016/0041-5553(67)90040-7
  12. Butnariu, D., Resmerita, E., 10.1155/AAA/2006/84919, Abstr. Appl. Anal. 2006 (2006), Article ID 84919, 39 pages. (2006) Zbl1130.47046MR2211675DOI10.1155/AAA/2006/84919
  13. Chang, S.-S., Wen, C.-F., Yao, J.-C., 10.1080/02331934.2017.1325888, Optimization 66 (2017), 1105-1117. (2017) Zbl06774306MR3656611DOI10.1080/02331934.2017.1325888
  14. Chang, S.-S., Wen, C.-F., Yao, J.-C., 10.1080/02331934.2018.1470176, Optimization 67 (2018), 183-1196. (2018) Zbl1402.90119MR3820582DOI10.1080/02331934.2018.1470176
  15. Chang, S.-S., Wen, C.-F., Yao, J.-C., 10.1007/s13398-018-0511-2, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), 729-747. (2019) Zbl07086844MR3942363DOI10.1007/s13398-018-0511-2
  16. Chang, S.-S., Wen, C.-F., Yao, J.-C., 10.1007/s40840-017-0470-3, Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 105-118. (2019) Zbl07009736MR3894618DOI10.1007/s40840-017-0470-3
  17. Chen, G. H.-G., Rockafellar, R. T., 10.1137/S1052623495290179, SIAM J. Optim. 7 (1997), 421-444. (1997) Zbl0876.49009MR1443627DOI10.1137/S1052623495290179
  18. Cholamjiak, P., Pholasa, N., Suantai, S., Sunthrayuth, P., 10.1080/02331934.2020.1789131, (to appear) in Optimization. MR4343296DOI10.1080/02331934.2020.1789131
  19. Combettes, P. L., Wajs, V. R., 10.1137/050626090, Multiscale Model. Simul. 4 (2005), 1168-1200. (2005) Zbl1179.94031MR2203849DOI10.1137/050626090
  20. Dunn, J. C., 10.1016/0022-247X(76)90152-9, J. Math. Anal. Appl. 53 (1976), 145-158. (1976) Zbl0321.49025MR0388176DOI10.1016/0022-247X(76)90152-9
  21. Güler, O., 10.1137/0329022, SIAM J. Control Optim. 29 (1991), 403-419. (1991) Zbl0737.90047MR1092735DOI10.1137/0329022
  22. He, S., Yang, C., 10.1155/2013/942315, Abstr. Appl. Anal. 2013 (2013), Article ID 942315, 8 pages. (2013) Zbl1273.47099MR3055865DOI10.1155/2013/942315
  23. Iyer, R., Bilmes, J. A., Submodular-Bregman and the Lovász-Bregman divergences with applications, Advances in Neural Information Processing Systems 25 (NIPS 2012) MIT Press, Cambridge (2012), 9 pages. 
  24. Kimura, Y., Nakajo, K., 10.23952/jnva.3.2019.1.02, J. Nonlinear Var. Anal. 3 (2019), 5-18. (2019) Zbl07133169MR4055639DOI10.23952/jnva.3.2019.1.02
  25. Lions, P.-L., Mercier, B., 10.1137/0716071, SIAM J. Numer. Anal. 16 (1979), 964-979. (1979) Zbl0426.65050MR0551319DOI10.1137/0716071
  26. López, G., Martín-Márquez, V., Wang, F., Xu, H.-K., 10.1155/2012/109236, Abstr. Appl. Anal. 2012 (2012), Article ID 109236, pages 25 pages. (2012) Zbl1252.47043MR2955015DOI10.1155/2012/109236
  27. Maingé, P. E., 10.1016/j.jmaa.2005.12.066, J. Math. Anal. Appl. 325 (2007), 469-479. (2007) Zbl1111.47058MR2273538DOI10.1016/j.jmaa.2005.12.066
  28. Martín-Márquez, V., Reich, S., Sabach, S., 10.3934/dcdss.2013.6.1043, Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 1043-1063. (2013) Zbl1266.26023MR3009055DOI10.3934/dcdss.2013.6.1043
  29. Naraghirad, E., 10.1080/01630563.2013.767269, Numer. Funct. Anal. Optim. 34 (2013), 1129-1155. (2013) Zbl1301.47088MR3175612DOI10.1080/01630563.2013.767269
  30. Naraghirad, E., Yao, J.-C., 10.1186/1687-1812-2013-141, Fixed Point Theory Appl. 2013 (2013), Article ID 141, 43 pages. (2013) Zbl1423.47046MR3072832DOI10.1186/1687-1812-2013-141
  31. Nielsen, F., Boltz, S., 10.1109/TIT.2011.2159046, IEEE Trans. Inf. Theory 57 (2011), 5455-5466. (2011) Zbl1365.94159MR2849367DOI10.1109/TIT.2011.2159046
  32. Nielsen, F., Nock, R., 10.1109/LSP.2017.2712195, IEEE Signal Process. Lett. 24 (2017), 1123-1127. (2017) DOI10.1109/LSP.2017.2712195
  33. Ogbuisi, F. U., Izuchukwu, C., 10.1080/01630563.2019.1628050, Numer. Funct. Anal. Optim. 41 (2020), 322-343. (2020) Zbl07150136MR4041318DOI10.1080/01630563.2019.1628050
  34. Pathak, H. K., 10.1007/978-981-10-8866-7, Springer, Singapore (2018). (2018) Zbl1447.47002MR3728339DOI10.1007/978-981-10-8866-7
  35. Reich, S., A weak convergence theorem for the alternating method with Bregman distances, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type Lecture Notes in Pure and Applied Mathematics 178. Marcel Dekker, New York (1996), 313-318. (1996) Zbl0943.47040MR1386686
  36. Reich, S., Sabach, S., 10.1080/01630560903499852, Numer. Funct. Anal. Optim. 31 (2010), 22-44. (2010) Zbl1200.47085MR2677243DOI10.1080/01630560903499852
  37. Reich, S., Sabach, S., 10.1016/j.na.2010.03.005, Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 122-135. (2010) Zbl1226.47089MR2645837DOI10.1016/j.na.2010.03.005
  38. Reich, S., Sabach, S., 10.1007/978-1-4419-9569-8_15, Fixed-Point Algorithms for Inverse Problems in Science and Engineering Springer Optimization and Its Applications 49. Springer, New York (2011), 301-316. (2011) Zbl1245.47015MR2858843DOI10.1007/978-1-4419-9569-8_15
  39. Rockafellar, R. T., 10.1515/9781400873173, Princeton University Press, Princeton (1970). (1970) Zbl0193.18401MR0274683DOI10.1515/9781400873173
  40. Rockafellar, R. T., 10.2140/pjm.1970.33.209, Pac. J. Math. 33 (1970), 209-216. (1970) Zbl0199.47101MR0262827DOI10.2140/pjm.1970.33.209
  41. Rockafellar, R. T., 10.1137/0314056, SIAM J. Control Optim. 14 (1976), 877-898. (1976) Zbl0358.90053MR0410483DOI10.1137/0314056
  42. Sabach, S., 10.1137/100799873, SIAM J. Optim. 21 (2011), 1289-1308. (2011) Zbl1237.47073MR2854584DOI10.1137/100799873
  43. Shehu, Y., 10.1007/s00025-019-1061-4, Result. Math. 74 (2019), Article ID 138, 24 pages. (2019) Zbl07099993MR3978049DOI10.1007/s00025-019-1061-4
  44. Shehu, Y., Cai, G., 10.1007/s13398-016-0366-3, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112 (2018), 71-87. (2018) Zbl06836237MR3742991DOI10.1007/s13398-016-0366-3
  45. Suantai, S., Cholamjiak, P., Sunthrayuth, P., 10.1007/s13398-017-0465-9, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), 203-223. (2019) Zbl1450.47026MR3902940DOI10.1007/s13398-017-0465-9
  46. Sunthrayuth, P., Cholamjiak, P., 10.1007/s11075-017-0411-0, Numer. Algorithms 78 (2018), 1019-1044. (2018) Zbl06916361MR3827320DOI10.1007/s11075-017-0411-0
  47. Takahashi, W., Wong, N.-C., Yao, J.-C., 10.11650/twjm/1500406684, Taiwanese J. Math. 16 (2012), 1151-1172. (2012) Zbl06062770MR2917261DOI10.11650/twjm/1500406684
  48. Tseng, P., 10.1137/S0363012998338806, SIAM J. Control Optim. 38 (2000), 431-446. (2000) Zbl0997.90062MR1741147DOI10.1137/S0363012998338806
  49. Wang, Y., Wang, F., 10.1080/02331934.2017.1411485, Optimization 67 (2018), 493-505. (2018) Zbl06865949MR3760003DOI10.1080/02331934.2017.1411485
  50. Xu, H.-K., 10.1016/0362-546X(91)90200-K, Nonlinear Anal., Theory Methods Appl. 16 (1991), 1127-1138. (1991) Zbl0757.46033MR1111623DOI10.1016/0362-546X(91)90200-K
  51. Zălinescu, C., 10.1142/5021, World Scientific, Singapore (2002). (2002) Zbl1023.46003MR1921556DOI10.1142/5021
  52. Zegeye, H., Shahzad, N., 10.1016/j.amc.2014.08.071, Appl. Math. Comput. 248 (2014), 225-234. (2014) Zbl1338.47115MR3276677DOI10.1016/j.amc.2014.08.071
  53. Zhu, J.-H., Chang, S.-S., 10.1186/1029-242X-2013-146, J. Inequal. Appl. 2013 (2013), Article ID 146, 14 pages. (2013) Zbl1279.47091MR3055828DOI10.1186/1029-242X-2013-146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.