Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces
Yan Tang; Ratthaprom Promkam; Prasit Cholamjiak; Pongsakorn Sunthrayuth
Applications of Mathematics (2022)
- Volume: 67, Issue: 2, page 129-152
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTang, Yan, et al. "Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces." Applications of Mathematics 67.2 (2022): 129-152. <http://eudml.org/doc/297688>.
@article{Tang2022,
abstract = {The aim of this paper is to propose two modified forward-backward splitting algorithms for zeros of the sum of a maximal monotone operator and a Bregman inverse strongly monotone operator in reflexive Banach spaces. We prove weak and strong convergence theorems of the generated sequences by the proposed methods under some suitable conditions. We apply our results to study the variational inequality problem and the equilibrium problem. Finally, a numerical example is given to illustrate the proposed methods. The results presented in this paper improve and generalize many known results in recent literature.},
author = {Tang, Yan, Promkam, Ratthaprom, Cholamjiak, Prasit, Sunthrayuth, Pongsakorn},
journal = {Applications of Mathematics},
keywords = {maximal operator; Bregman distance; reflexive Banach space; weak convergence; strong convergence},
language = {eng},
number = {2},
pages = {129-152},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces},
url = {http://eudml.org/doc/297688},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Tang, Yan
AU - Promkam, Ratthaprom
AU - Cholamjiak, Prasit
AU - Sunthrayuth, Pongsakorn
TI - Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 129
EP - 152
AB - The aim of this paper is to propose two modified forward-backward splitting algorithms for zeros of the sum of a maximal monotone operator and a Bregman inverse strongly monotone operator in reflexive Banach spaces. We prove weak and strong convergence theorems of the generated sequences by the proposed methods under some suitable conditions. We apply our results to study the variational inequality problem and the equilibrium problem. Finally, a numerical example is given to illustrate the proposed methods. The results presented in this paper improve and generalize many known results in recent literature.
LA - eng
KW - maximal operator; Bregman distance; reflexive Banach space; weak convergence; strong convergence
UR - http://eudml.org/doc/297688
ER -
References
top- Agarwal, R. P., O'Regan, D., Sahu, D. R., 10.1007/978-0-387-75818-3, Topological Fixed Point Theory and Its Applications 6. Springer, New York (2009). (2009) Zbl1176.47037MR2508013DOI10.1007/978-0-387-75818-3
- Alber, Y. I., Generalized projection operators in Banach spaces: Properties and applications, Funct. Differ. Equ. 1 (1993), 1-21. (1993) Zbl0882.47046MR1297965
- Alber, Y. I., Metric and generalized projection operators in Banach spaces: Properties and applications, Theory and Applications of Nonlinear Operator of Accretive and Monotone Type Lecture Notes in Pure and Applied Mathematics 178. Marcel Dekker, New York (1996), 15-50. (1996) Zbl0883.47083MR1386667
- Barbu, V., Precupanu, T., 10.1007/978-94-007-2247-7, Springer Monographs in Mathematics. Springer, Dordrecht (2012). (2012) Zbl1244.49001MR3025420DOI10.1007/978-94-007-2247-7
- Bauschke, H. H., Borwein, J. M., Combettes, P. L., 10.1142/S0219199701000524, Commun. Contemp. Math. 3 (2001), 615-647. (2001) Zbl1032.49025MR1869107DOI10.1142/S0219199701000524
- Bauschke, H. H., Wang, X., Yao, L., General resolvents for monotone operators: Characterization and extension, Biomedical Mathematics: Promising Directions in Imagine, Therapy Planning and Inverse Problem (Huangguoshu 2008) Medical Physics Publishing, Madison (2010), 57-74 Y. Censor, M. Jiang, G. Wang. (2010)
- Beck, A., 10.1137/1.9781611974997, MOS-SIAM Series on Optimization 25. SIAM, Philadelphia (2017). (2017) Zbl1384.65033MR3719240DOI10.1137/1.9781611974997
- Bertsekas, D. P., Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical Methods, Athena Scientific, Belmont (1997). (1997) Zbl0743.65107MR3587745
- Bonnans, J. F., Shapiro, A., 10.1007/978-1-4612-1394-9, Springer Series in Operations Research. Springer, New York (2000). (2000) Zbl0966.49001MR1756264DOI10.1007/978-1-4612-1394-9
- Borwein, J. M., Reich, S., Sabach, S., A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept, J. Nonlinear Convex Anal. 12 (2011), 161-184. (2011) Zbl1221.26019MR2816416
- Bregman, L. M., 10.1016/0041-5553(67)90040-7, U.S.S.R. Comput. Math. Math. Phys. 7 (1967), 200-217 translation from Zh. Vychisl. Mat. Mat. Fiz. 7 1967 620-631. (1967) Zbl0186.23807MR0215617DOI10.1016/0041-5553(67)90040-7
- Butnariu, D., Resmerita, E., 10.1155/AAA/2006/84919, Abstr. Appl. Anal. 2006 (2006), Article ID 84919, 39 pages. (2006) Zbl1130.47046MR2211675DOI10.1155/AAA/2006/84919
- Chang, S.-S., Wen, C.-F., Yao, J.-C., 10.1080/02331934.2017.1325888, Optimization 66 (2017), 1105-1117. (2017) Zbl06774306MR3656611DOI10.1080/02331934.2017.1325888
- Chang, S.-S., Wen, C.-F., Yao, J.-C., 10.1080/02331934.2018.1470176, Optimization 67 (2018), 183-1196. (2018) Zbl1402.90119MR3820582DOI10.1080/02331934.2018.1470176
- Chang, S.-S., Wen, C.-F., Yao, J.-C., 10.1007/s13398-018-0511-2, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), 729-747. (2019) Zbl07086844MR3942363DOI10.1007/s13398-018-0511-2
- Chang, S.-S., Wen, C.-F., Yao, J.-C., 10.1007/s40840-017-0470-3, Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 105-118. (2019) Zbl07009736MR3894618DOI10.1007/s40840-017-0470-3
- Chen, G. H.-G., Rockafellar, R. T., 10.1137/S1052623495290179, SIAM J. Optim. 7 (1997), 421-444. (1997) Zbl0876.49009MR1443627DOI10.1137/S1052623495290179
- Cholamjiak, P., Pholasa, N., Suantai, S., Sunthrayuth, P., 10.1080/02331934.2020.1789131, (to appear) in Optimization. MR4343296DOI10.1080/02331934.2020.1789131
- Combettes, P. L., Wajs, V. R., 10.1137/050626090, Multiscale Model. Simul. 4 (2005), 1168-1200. (2005) Zbl1179.94031MR2203849DOI10.1137/050626090
- Dunn, J. C., 10.1016/0022-247X(76)90152-9, J. Math. Anal. Appl. 53 (1976), 145-158. (1976) Zbl0321.49025MR0388176DOI10.1016/0022-247X(76)90152-9
- Güler, O., 10.1137/0329022, SIAM J. Control Optim. 29 (1991), 403-419. (1991) Zbl0737.90047MR1092735DOI10.1137/0329022
- He, S., Yang, C., 10.1155/2013/942315, Abstr. Appl. Anal. 2013 (2013), Article ID 942315, 8 pages. (2013) Zbl1273.47099MR3055865DOI10.1155/2013/942315
- Iyer, R., Bilmes, J. A., Submodular-Bregman and the Lovász-Bregman divergences with applications, Advances in Neural Information Processing Systems 25 (NIPS 2012) MIT Press, Cambridge (2012), 9 pages.
- Kimura, Y., Nakajo, K., 10.23952/jnva.3.2019.1.02, J. Nonlinear Var. Anal. 3 (2019), 5-18. (2019) Zbl07133169MR4055639DOI10.23952/jnva.3.2019.1.02
- Lions, P.-L., Mercier, B., 10.1137/0716071, SIAM J. Numer. Anal. 16 (1979), 964-979. (1979) Zbl0426.65050MR0551319DOI10.1137/0716071
- López, G., Martín-Márquez, V., Wang, F., Xu, H.-K., 10.1155/2012/109236, Abstr. Appl. Anal. 2012 (2012), Article ID 109236, pages 25 pages. (2012) Zbl1252.47043MR2955015DOI10.1155/2012/109236
- Maingé, P. E., 10.1016/j.jmaa.2005.12.066, J. Math. Anal. Appl. 325 (2007), 469-479. (2007) Zbl1111.47058MR2273538DOI10.1016/j.jmaa.2005.12.066
- Martín-Márquez, V., Reich, S., Sabach, S., 10.3934/dcdss.2013.6.1043, Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 1043-1063. (2013) Zbl1266.26023MR3009055DOI10.3934/dcdss.2013.6.1043
- Naraghirad, E., 10.1080/01630563.2013.767269, Numer. Funct. Anal. Optim. 34 (2013), 1129-1155. (2013) Zbl1301.47088MR3175612DOI10.1080/01630563.2013.767269
- Naraghirad, E., Yao, J.-C., 10.1186/1687-1812-2013-141, Fixed Point Theory Appl. 2013 (2013), Article ID 141, 43 pages. (2013) Zbl1423.47046MR3072832DOI10.1186/1687-1812-2013-141
- Nielsen, F., Boltz, S., 10.1109/TIT.2011.2159046, IEEE Trans. Inf. Theory 57 (2011), 5455-5466. (2011) Zbl1365.94159MR2849367DOI10.1109/TIT.2011.2159046
- Nielsen, F., Nock, R., 10.1109/LSP.2017.2712195, IEEE Signal Process. Lett. 24 (2017), 1123-1127. (2017) DOI10.1109/LSP.2017.2712195
- Ogbuisi, F. U., Izuchukwu, C., 10.1080/01630563.2019.1628050, Numer. Funct. Anal. Optim. 41 (2020), 322-343. (2020) Zbl07150136MR4041318DOI10.1080/01630563.2019.1628050
- Pathak, H. K., 10.1007/978-981-10-8866-7, Springer, Singapore (2018). (2018) Zbl1447.47002MR3728339DOI10.1007/978-981-10-8866-7
- Reich, S., A weak convergence theorem for the alternating method with Bregman distances, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type Lecture Notes in Pure and Applied Mathematics 178. Marcel Dekker, New York (1996), 313-318. (1996) Zbl0943.47040MR1386686
- Reich, S., Sabach, S., 10.1080/01630560903499852, Numer. Funct. Anal. Optim. 31 (2010), 22-44. (2010) Zbl1200.47085MR2677243DOI10.1080/01630560903499852
- Reich, S., Sabach, S., 10.1016/j.na.2010.03.005, Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 122-135. (2010) Zbl1226.47089MR2645837DOI10.1016/j.na.2010.03.005
- Reich, S., Sabach, S., 10.1007/978-1-4419-9569-8_15, Fixed-Point Algorithms for Inverse Problems in Science and Engineering Springer Optimization and Its Applications 49. Springer, New York (2011), 301-316. (2011) Zbl1245.47015MR2858843DOI10.1007/978-1-4419-9569-8_15
- Rockafellar, R. T., 10.1515/9781400873173, Princeton University Press, Princeton (1970). (1970) Zbl0193.18401MR0274683DOI10.1515/9781400873173
- Rockafellar, R. T., 10.2140/pjm.1970.33.209, Pac. J. Math. 33 (1970), 209-216. (1970) Zbl0199.47101MR0262827DOI10.2140/pjm.1970.33.209
- Rockafellar, R. T., 10.1137/0314056, SIAM J. Control Optim. 14 (1976), 877-898. (1976) Zbl0358.90053MR0410483DOI10.1137/0314056
- Sabach, S., 10.1137/100799873, SIAM J. Optim. 21 (2011), 1289-1308. (2011) Zbl1237.47073MR2854584DOI10.1137/100799873
- Shehu, Y., 10.1007/s00025-019-1061-4, Result. Math. 74 (2019), Article ID 138, 24 pages. (2019) Zbl07099993MR3978049DOI10.1007/s00025-019-1061-4
- Shehu, Y., Cai, G., 10.1007/s13398-016-0366-3, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112 (2018), 71-87. (2018) Zbl06836237MR3742991DOI10.1007/s13398-016-0366-3
- Suantai, S., Cholamjiak, P., Sunthrayuth, P., 10.1007/s13398-017-0465-9, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), 203-223. (2019) Zbl1450.47026MR3902940DOI10.1007/s13398-017-0465-9
- Sunthrayuth, P., Cholamjiak, P., 10.1007/s11075-017-0411-0, Numer. Algorithms 78 (2018), 1019-1044. (2018) Zbl06916361MR3827320DOI10.1007/s11075-017-0411-0
- Takahashi, W., Wong, N.-C., Yao, J.-C., 10.11650/twjm/1500406684, Taiwanese J. Math. 16 (2012), 1151-1172. (2012) Zbl06062770MR2917261DOI10.11650/twjm/1500406684
- Tseng, P., 10.1137/S0363012998338806, SIAM J. Control Optim. 38 (2000), 431-446. (2000) Zbl0997.90062MR1741147DOI10.1137/S0363012998338806
- Wang, Y., Wang, F., 10.1080/02331934.2017.1411485, Optimization 67 (2018), 493-505. (2018) Zbl06865949MR3760003DOI10.1080/02331934.2017.1411485
- Xu, H.-K., 10.1016/0362-546X(91)90200-K, Nonlinear Anal., Theory Methods Appl. 16 (1991), 1127-1138. (1991) Zbl0757.46033MR1111623DOI10.1016/0362-546X(91)90200-K
- Zălinescu, C., 10.1142/5021, World Scientific, Singapore (2002). (2002) Zbl1023.46003MR1921556DOI10.1142/5021
- Zegeye, H., Shahzad, N., 10.1016/j.amc.2014.08.071, Appl. Math. Comput. 248 (2014), 225-234. (2014) Zbl1338.47115MR3276677DOI10.1016/j.amc.2014.08.071
- Zhu, J.-H., Chang, S.-S., 10.1186/1029-242X-2013-146, J. Inequal. Appl. 2013 (2013), Article ID 146, 14 pages. (2013) Zbl1279.47091MR3055828DOI10.1186/1029-242X-2013-146
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.