On the distribution of the roots of polynomial
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 3, page 291-296
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGómez, Carlos A., and Luca, Florian. "On the distribution of the roots of polynomial $z^k-z^{k-1}-\dots - z-1$." Commentationes Mathematicae Universitatis Carolinae 62.3 (2021): 291-296. <http://eudml.org/doc/297693>.
@article{Gómez2021,
abstract = {We consider the polynomial $f_k(z) = z^k-z^\{k-1\}-\cdots -z-1$ for $k\ge 2$ which arises as the characteristic polynomial of the $k$-generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of $f_k(z)$ which lie inside the unit disk.},
author = {Gómez, Carlos A., Luca, Florian},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {polynomial root distribution},
language = {eng},
number = {3},
pages = {291-296},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the distribution of the roots of polynomial $z^k-z^\{k-1\}-\dots - z-1$},
url = {http://eudml.org/doc/297693},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Gómez, Carlos A.
AU - Luca, Florian
TI - On the distribution of the roots of polynomial $z^k-z^{k-1}-\dots - z-1$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 3
SP - 291
EP - 296
AB - We consider the polynomial $f_k(z) = z^k-z^{k-1}-\cdots -z-1$ for $k\ge 2$ which arises as the characteristic polynomial of the $k$-generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of $f_k(z)$ which lie inside the unit disk.
LA - eng
KW - polynomial root distribution
UR - http://eudml.org/doc/297693
ER -
References
top- Erdös P., Turán P., 10.2307/1969500, Ann. of Math. (2) 51 (1950), 105–119. DOI10.2307/1969500
- Everest G., van der Poorten A., Shparlinski I., Ward T., 10.1090/surv/104/06, Mathematical Surveys and Monographs, 104, American Mathematical Society, Providence, 2003. DOI10.1090/surv/104/06
- Gómez C. A., Luca F., On the zero-multiplicity unitary of a fifth-order linear recurrences, International Journal of Number Theory 15 (2018), no. 3, 585–595.
- Hua L. K., Wang Y., Applications of Number Theory to Numerical Analysis, Springer, Berlin, 1981. Zbl0465.10045
- Marques D., Trojovský P., On characteristic polynomial of higher order generalized Jacobsthal numbers, Adv. Difference Equ. 2019 (2019), Paper No. 392, 9 pages.
- Miles E. P., Jr., 10.1080/00029890.1960.11989593, Amer. Math. Monthly 67 (1960), 745–752. DOI10.1080/00029890.1960.11989593
- Miller M. D., Mathematical notes: On generalized Fibonacci numbers, Amer. Math. Monthly 78 (1971), no. 10, 1108–1109.
- Soundararajan K., 10.1080/00029890.2019.1546078, Amer. Math. Monthly 126 (2019), no. 3, 226–236. DOI10.1080/00029890.2019.1546078
- Wolfram D. A., Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1998), no. 2, 129–145.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.