Variational Gaussian process for optimal sensor placement

Gabor Tajnafoi; Rossella Arcucci; Laetitia Mottet; Carolanne Vouriot; Miguel Molina-Solana; Christopher Pain; Yi-Ke Guo

Applications of Mathematics (2021)

  • Volume: 66, Issue: 2, page 287-317
  • ISSN: 0862-7940

Abstract

top
Sensor placement is an optimisation problem that has recently gained great relevance. In order to achieve accurate online updates of a predictive model, sensors are used to provide observations. When sensor location is optimally selected, the predictive model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating these optimal spatial locations from a numerical embedded space. A novel architecture for solving this big data problem is proposed, relying on a variational Gaussian process. The generalisation of the model is further improved via the preconditioning of its inputs: Masked Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the conditionally modelled spatial features. Finally, a global optimisation strategy extending the Mutual Information-based optimisation and fine-tuning of the selected optimal location is proposed. The methodology is parallelised to speed up the computational time, making these tools very fast despite the high complexity associated with both spatial modelling and placement tasks. The model is applied to a real three-dimensional test case considering a room within the Clarence Centre building located in Elephant and Castle, London, UK.

How to cite

top

Tajnafoi, Gabor, et al. "Variational Gaussian process for optimal sensor placement." Applications of Mathematics 66.2 (2021): 287-317. <http://eudml.org/doc/297705>.

@article{Tajnafoi2021,
abstract = {Sensor placement is an optimisation problem that has recently gained great relevance. In order to achieve accurate online updates of a predictive model, sensors are used to provide observations. When sensor location is optimally selected, the predictive model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating these optimal spatial locations from a numerical embedded space. A novel architecture for solving this big data problem is proposed, relying on a variational Gaussian process. The generalisation of the model is further improved via the preconditioning of its inputs: Masked Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the conditionally modelled spatial features. Finally, a global optimisation strategy extending the Mutual Information-based optimisation and fine-tuning of the selected optimal location is proposed. The methodology is parallelised to speed up the computational time, making these tools very fast despite the high complexity associated with both spatial modelling and placement tasks. The model is applied to a real three-dimensional test case considering a room within the Clarence Centre building located in Elephant and Castle, London, UK.},
author = {Tajnafoi, Gabor, Arcucci, Rossella, Mottet, Laetitia, Vouriot, Carolanne, Molina-Solana, Miguel, Pain, Christopher, Guo, Yi-Ke},
journal = {Applications of Mathematics},
keywords = {sensor placement; variational Gaussian process; mutual information},
language = {eng},
number = {2},
pages = {287-317},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational Gaussian process for optimal sensor placement},
url = {http://eudml.org/doc/297705},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Tajnafoi, Gabor
AU - Arcucci, Rossella
AU - Mottet, Laetitia
AU - Vouriot, Carolanne
AU - Molina-Solana, Miguel
AU - Pain, Christopher
AU - Guo, Yi-Ke
TI - Variational Gaussian process for optimal sensor placement
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 287
EP - 317
AB - Sensor placement is an optimisation problem that has recently gained great relevance. In order to achieve accurate online updates of a predictive model, sensors are used to provide observations. When sensor location is optimally selected, the predictive model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating these optimal spatial locations from a numerical embedded space. A novel architecture for solving this big data problem is proposed, relying on a variational Gaussian process. The generalisation of the model is further improved via the preconditioning of its inputs: Masked Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the conditionally modelled spatial features. Finally, a global optimisation strategy extending the Mutual Information-based optimisation and fine-tuning of the selected optimal location is proposed. The methodology is parallelised to speed up the computational time, making these tools very fast despite the high complexity associated with both spatial modelling and placement tasks. The model is applied to a real three-dimensional test case considering a room within the Clarence Centre building located in Elephant and Castle, London, UK.
LA - eng
KW - sensor placement; variational Gaussian process; mutual information
UR - http://eudml.org/doc/297705
ER -

References

top
  1. Abhishek, K., Singh, M. P., Ghosh, S., Anand, A., 10.1016/j.protcy.2012.05.047, Procedia Technology 4 (2012), 311-318. (2012) DOI10.1016/j.protcy.2012.05.047
  2. Modelling, Applied, Group, Computation, Fluidity manual (Version 4.1), Available at https://figshare.com/articles/FluidityManual/1387713 (2015), 329 pages. (2015) 
  3. Arcucci, R., D'Amore, L., Pistoia, J., Toumi, R., Murli, A., 10.1016/j.jcp.2017.01.034, J. Comput. Phys. 335 (2017), 311-326. (2017) Zbl1375.49036MR3612500DOI10.1016/j.jcp.2017.01.034
  4. Arcucci, R., McIlwraith, D., Guo, Y.-K., 10.1007/978-3-030-22747-0_9, Computational Science -- ICCS 2019 Lecture Notes in Computer Science 11539. Springer, Cham (2019), 111-125. (2019) MR3976280DOI10.1007/978-3-030-22747-0_9
  5. Arcucci, R., Mottet, L., Pain, C., Guo, Y.-K., 10.1016/j.jcp.2018.10.042, J. Comput. Phys. 379 (2019), 51-69. (2019) MR3881150DOI10.1016/j.jcp.2018.10.042
  6. Aristodemou, E., Arcucci, R., Mottet, L., Robins, A., Pain, C., Guo, Y.-K., 10.1016/j.buildenv.2019.106383, Building and Environment 165 (2019), Article ID 106383, 15 pages. (2019) DOI10.1016/j.buildenv.2019.106383
  7. Beal, M. J., Variational Algorithms for Approximate Bayesian Inference: A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London, University of London, London (2003). (2003) 
  8. Bentham, J. H. T., Microscale Modelling of Air Flow and Pollutant Dispersion in the Urban Environment: Doctoral Thesis, University of London, London (2004). (2004) 
  9. Blei, D. M., Kucukelbir, A., McAuliffe, J. D., 10.1080/01621459.2017.1285773, J. Am. Stat. Assoc. 112 (2017), 859-877. (2017) MR3671776DOI10.1080/01621459.2017.1285773
  10. Bócsi, B., Hennig, P., Csató, L., Peters, J., 10.1109/ICRA.2012.6224831, IEEE International Conference on Robotics and Automation (ICRA) IEEE, New York (2012), 259-264. (2012) DOI10.1109/ICRA.2012.6224831
  11. Cornford, D., Nabney, I. T., Williams, C. K. I., Adding constrained discontinuities to Gaussian process models of wind fields, Advances in Neural Information Processing Systems 11 (NIPS 1998) MIT Press, Cambridge (1999), 861-867. (1999) 
  12. Cressie, N., 10.1111/j.1365-3121.1992.tb00605.x, Terra Nova 4 (1992), 613-617. (1992) MR1127423DOI10.1111/j.1365-3121.1992.tb00605.x
  13. D'Amore, L., Arcucci, R., Marcellino, L., Murli, A., 10.1063/1.3636965, Numerical Analysis and Applied Mathematics, ICNAAM 2011 AIP Conference Proceedings 1389. AIP, Melville (2011), 1829-1831. (2011) Zbl1262.65002DOI10.1063/1.3636965
  14. Doersch, C., Tutorial on variational autoencoders, Available at https://arxiv.org/abs/1606.05908 (2016), 23 pages. (2016) 
  15. Dur, T. H., Arcucci, R., Mottet, L., Solana, M. Molina, Pain, C., Guo, Y.-K., 10.1016/j.jocs.2020.101110, J. Comput. Sci. 42 (2020), Article ID 101110, 12 pages. (2020) MR4082342DOI10.1016/j.jocs.2020.101110
  16. Germain, M., Gregor, K., Murray, I., Larochelle, H., MADE: Masked Autoencoder for Distribution Estimation, Proc. Mach. Learn. Res. 37 (2015), 881-889. (2015) 
  17. González-Banos, H., 10.1145/378583.378674, SCG'01: Proceedings of the 17th Annual Symposium on Computational Geometry ACM, New York (2001), 232-240. (2001) Zbl1375.68139DOI10.1145/378583.378674
  18. Goodfellow, I., Bengio, Y., Courville, A., Deep Learning, Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016). (2016) Zbl1373.68009MR3617773
  19. Team, Google Brain, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Available at https://www.tensorflow.org/ (2015). (2015) 
  20. Guestrin, C., Krause, A., Singh, A. P., 10.1145/1102351.1102385, ICML'05: Proceedings of the 22nd International Conference on Machine Learning ACM, New York (2005), 265-272. (2005) DOI10.1145/1102351.1102385
  21. Hagan, J., Gillis, A. R., Chan, J., 10.1111/j.1533-8525.1978.tb01183.x, Sociological Quarterly 19 (1978), 386-398. (1978) DOI10.1111/j.1533-8525.1978.tb01183.x
  22. Hensman, J., Fusi, N., Lawrence, N. D., Gaussian processes for big data, Available at https://arxiv.org/abs/1309.6835 (2013), 9 pages. (2013) 
  23. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R., 10.1016/j.ijheatfluidflow.2006.02.006, Int. J. Heat Fluid Flow 27 (2006), 585-593. (2006) DOI10.1016/j.ijheatfluidflow.2006.02.006
  24. Kelly, F. J., Fussell, J. C., 10.1016/j.atmosenv.2018.11.058, Atmospheric Environment 200 (2019), 90-109. (2019) DOI10.1016/j.atmosenv.2018.11.058
  25. Kingma, D. P., Welling, M., Auto-encoding variational Bayes, Available at https://arxiv.org/abs/1312.6114 (2013), 14 pages. (2013) 
  26. Krause, A., Singh, A., Guestrin, C., Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies, J. Mach. Learn. Res. 9 (2008), 235-284. (2008) Zbl1225.68192
  27. Kullback, S., Leibler, R. A., 10.1214/aoms/1177729694, Ann. Math. Stat. 22 (1951), 79-86. (1951) Zbl0042.38403MR0039968DOI10.1214/aoms/1177729694
  28. Lin, C.-C., Wang, L. L., 10.1016/j.buildenv.2013.03.008, Building and Environment 64 (2013), 169-176. (2013) DOI10.1016/j.buildenv.2013.03.008
  29. Liu, H., Ong, Y.-S., Shen, X., Cai, J., When Gaussian process meets big data: A review of scalable GPs, Available at https://arxiv.org/abs/1807.01065 (2018), 20 pages. (2018) MR4169962
  30. MacKay, D. J. C., Introduction to Gaussian processes, Neural Networks and Machine Learning NATO ASI Series F Computer and Systems Sciences 168. Springer, Berlin (1998), 133-166. (1998) 
  31. M. I. Mead, O. A. M. Popoola, G. B. Stewart, P. Landshoff, M. Calleja, M. Hayes, J. J. Baldovi, M. W. McLeod, T. F. Hodgson, J. Dicks, A. Lewis, J. Cohen, R. Baron, J. R. Saffell, R. L. Jones, 10.1016/j.atmosenv.2012.11.060, Atmospheric Environment 70 (2013), 186-203. (2013) DOI10.1016/j.atmosenv.2012.11.060
  32. Pain, C. C., Umpleby, A. P., Oliveira, C. R. E. de, Goddard, A. J. H., 10.1016/S0045-7825(00)00294-2, Comput. Methods Appl. Mech. Eng. 190 (2001), 3771-3796. (2001) Zbl1008.76041DOI10.1016/S0045-7825(00)00294-2
  33. Papamakarios, G., Pavlakou, T., Murray, I., Masked autoregressive flow for density estimation, Advances in Neural Information Processing Systems 30 (NIPS 2017) MIT Press, Cambridge (2017), 2338-2347. (2017) 
  34. Pavlidis, D., Gorman, G. J., Gomes, J. L. M. A., Pain, C. C., ApSimon, H., 10.1007/s10546-010-9508-x, Boundary-Layer Meteorology 136 (2010), 285-299. (2010) DOI10.1007/s10546-010-9508-x
  35. Quiñonero-Candela, J., Rasmussen, C. E., A unifying view of sparse approximate Gaussian process regression, J. Mach. Learn. Res. 6 (2005), 1939-1959. (2005) Zbl1222.68282MR2249877
  36. Ramakrishnan, N., Bailey-Kellogg, C., Tadepalliy, S., Pandey, V. N., 10.1137/1.9781611972757.38, Proceedings of the 2005 SIAM International Conference on Data Mining SIAM, Philadelphia (2005), 427-438. (2005) DOI10.1137/1.9781611972757.38
  37. Rasmussen, C. E., 10.1007/978-3-540-28650-9_4, Advanced Lectures on Machine Learning Lecture Notes in Computer Science 3176. Springer, Berlin (2003), 63-71. (2003) DOI10.1007/978-3-540-28650-9_4
  38. Rezende, D. J., Mohamed, S., Variational inference with normalizing flows, Available at https://arxiv.org/abs/1505.05770 (2015), 10 pages. (2015) 
  39. Smagorinsky, J., 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, Mon. Wea. Rev. 91 (1963), 99-164. (1963) DOI10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  40. J. Song, S. Fan, W. Lin, L. Mottet, H. Woodward, M. Davies Wykes, R. Arcucci, D. Xiao, J.-E. Debay, H. ApSimon, E. Aristodenou, D. Birch, M. Carpentieri, F. Fang, M. Herzog, G. R. Hunt, R. L. Jones, C. Pain, D. Pavlidis, A. G. Robins, C. A. Short, P. F. Linden, 10.1080/09613218.2018.1468158, Building Research & Information 46 (2018), 809-828. (2018) DOI10.1080/09613218.2018.1468158
  41. Titsias, M. K., Variational learning of inducing variables in sparse Gaussian processes, Proc. Mach. Learn. Res. 5 (2009), 567-574. (2009) 
  42. Titsias, M. K., Variational Model Selection for Sparse Gaussian Process Regression, Technical report, University of Manchester, Manchester (2009). (2009) 
  43. Tran, V. H., Copula variational Bayes inference via information geometry, Available at https://arxiv.org/abs/1803.10998 (2018), 23 pages . (2018) 
  44. Tran, D., Ranganath, R., Blei, D. M., The variational Gaussian process, Available at https://arxiv.org/abs/1511.06499 (2015), 14 pages. (2015) 
  45. Wickham, H., 10.1007/978-3-319-24277-4, Use R! Springer, Cham (2016). (2016) Zbl1397.62006DOI10.1007/978-3-319-24277-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.