Variational Gaussian process for optimal sensor placement
Gabor Tajnafoi; Rossella Arcucci; Laetitia Mottet; Carolanne Vouriot; Miguel Molina-Solana; Christopher Pain; Yi-Ke Guo
Applications of Mathematics (2021)
- Volume: 66, Issue: 2, page 287-317
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTajnafoi, Gabor, et al. "Variational Gaussian process for optimal sensor placement." Applications of Mathematics 66.2 (2021): 287-317. <http://eudml.org/doc/297705>.
@article{Tajnafoi2021,
abstract = {Sensor placement is an optimisation problem that has recently gained great relevance. In order to achieve accurate online updates of a predictive model, sensors are used to provide observations. When sensor location is optimally selected, the predictive model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating these optimal spatial locations from a numerical embedded space. A novel architecture for solving this big data problem is proposed, relying on a variational Gaussian process. The generalisation of the model is further improved via the preconditioning of its inputs: Masked Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the conditionally modelled spatial features. Finally, a global optimisation strategy extending the Mutual Information-based optimisation and fine-tuning of the selected optimal location is proposed. The methodology is parallelised to speed up the computational time, making these tools very fast despite the high complexity associated with both spatial modelling and placement tasks. The model is applied to a real three-dimensional test case considering a room within the Clarence Centre building located in Elephant and Castle, London, UK.},
author = {Tajnafoi, Gabor, Arcucci, Rossella, Mottet, Laetitia, Vouriot, Carolanne, Molina-Solana, Miguel, Pain, Christopher, Guo, Yi-Ke},
journal = {Applications of Mathematics},
keywords = {sensor placement; variational Gaussian process; mutual information},
language = {eng},
number = {2},
pages = {287-317},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational Gaussian process for optimal sensor placement},
url = {http://eudml.org/doc/297705},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Tajnafoi, Gabor
AU - Arcucci, Rossella
AU - Mottet, Laetitia
AU - Vouriot, Carolanne
AU - Molina-Solana, Miguel
AU - Pain, Christopher
AU - Guo, Yi-Ke
TI - Variational Gaussian process for optimal sensor placement
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 287
EP - 317
AB - Sensor placement is an optimisation problem that has recently gained great relevance. In order to achieve accurate online updates of a predictive model, sensors are used to provide observations. When sensor location is optimally selected, the predictive model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating these optimal spatial locations from a numerical embedded space. A novel architecture for solving this big data problem is proposed, relying on a variational Gaussian process. The generalisation of the model is further improved via the preconditioning of its inputs: Masked Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the conditionally modelled spatial features. Finally, a global optimisation strategy extending the Mutual Information-based optimisation and fine-tuning of the selected optimal location is proposed. The methodology is parallelised to speed up the computational time, making these tools very fast despite the high complexity associated with both spatial modelling and placement tasks. The model is applied to a real three-dimensional test case considering a room within the Clarence Centre building located in Elephant and Castle, London, UK.
LA - eng
KW - sensor placement; variational Gaussian process; mutual information
UR - http://eudml.org/doc/297705
ER -
References
top- Abhishek, K., Singh, M. P., Ghosh, S., Anand, A., 10.1016/j.protcy.2012.05.047, Procedia Technology 4 (2012), 311-318. (2012) DOI10.1016/j.protcy.2012.05.047
- Modelling, Applied, Group, Computation, Fluidity manual (Version 4.1), Available at https://figshare.com/articles/FluidityManual/1387713 (2015), 329 pages. (2015)
- Arcucci, R., D'Amore, L., Pistoia, J., Toumi, R., Murli, A., 10.1016/j.jcp.2017.01.034, J. Comput. Phys. 335 (2017), 311-326. (2017) Zbl1375.49036MR3612500DOI10.1016/j.jcp.2017.01.034
- Arcucci, R., McIlwraith, D., Guo, Y.-K., 10.1007/978-3-030-22747-0_9, Computational Science -- ICCS 2019 Lecture Notes in Computer Science 11539. Springer, Cham (2019), 111-125. (2019) MR3976280DOI10.1007/978-3-030-22747-0_9
- Arcucci, R., Mottet, L., Pain, C., Guo, Y.-K., 10.1016/j.jcp.2018.10.042, J. Comput. Phys. 379 (2019), 51-69. (2019) MR3881150DOI10.1016/j.jcp.2018.10.042
- Aristodemou, E., Arcucci, R., Mottet, L., Robins, A., Pain, C., Guo, Y.-K., 10.1016/j.buildenv.2019.106383, Building and Environment 165 (2019), Article ID 106383, 15 pages. (2019) DOI10.1016/j.buildenv.2019.106383
- Beal, M. J., Variational Algorithms for Approximate Bayesian Inference: A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London, University of London, London (2003). (2003)
- Bentham, J. H. T., Microscale Modelling of Air Flow and Pollutant Dispersion in the Urban Environment: Doctoral Thesis, University of London, London (2004). (2004)
- Blei, D. M., Kucukelbir, A., McAuliffe, J. D., 10.1080/01621459.2017.1285773, J. Am. Stat. Assoc. 112 (2017), 859-877. (2017) MR3671776DOI10.1080/01621459.2017.1285773
- Bócsi, B., Hennig, P., Csató, L., Peters, J., 10.1109/ICRA.2012.6224831, IEEE International Conference on Robotics and Automation (ICRA) IEEE, New York (2012), 259-264. (2012) DOI10.1109/ICRA.2012.6224831
- Cornford, D., Nabney, I. T., Williams, C. K. I., Adding constrained discontinuities to Gaussian process models of wind fields, Advances in Neural Information Processing Systems 11 (NIPS 1998) MIT Press, Cambridge (1999), 861-867. (1999)
- Cressie, N., 10.1111/j.1365-3121.1992.tb00605.x, Terra Nova 4 (1992), 613-617. (1992) MR1127423DOI10.1111/j.1365-3121.1992.tb00605.x
- D'Amore, L., Arcucci, R., Marcellino, L., Murli, A., 10.1063/1.3636965, Numerical Analysis and Applied Mathematics, ICNAAM 2011 AIP Conference Proceedings 1389. AIP, Melville (2011), 1829-1831. (2011) Zbl1262.65002DOI10.1063/1.3636965
- Doersch, C., Tutorial on variational autoencoders, Available at https://arxiv.org/abs/1606.05908 (2016), 23 pages. (2016)
- Dur, T. H., Arcucci, R., Mottet, L., Solana, M. Molina, Pain, C., Guo, Y.-K., 10.1016/j.jocs.2020.101110, J. Comput. Sci. 42 (2020), Article ID 101110, 12 pages. (2020) MR4082342DOI10.1016/j.jocs.2020.101110
- Germain, M., Gregor, K., Murray, I., Larochelle, H., MADE: Masked Autoencoder for Distribution Estimation, Proc. Mach. Learn. Res. 37 (2015), 881-889. (2015)
- González-Banos, H., 10.1145/378583.378674, SCG'01: Proceedings of the 17th Annual Symposium on Computational Geometry ACM, New York (2001), 232-240. (2001) Zbl1375.68139DOI10.1145/378583.378674
- Goodfellow, I., Bengio, Y., Courville, A., Deep Learning, Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016). (2016) Zbl1373.68009MR3617773
- Team, Google Brain, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Available at https://www.tensorflow.org/ (2015). (2015)
- Guestrin, C., Krause, A., Singh, A. P., 10.1145/1102351.1102385, ICML'05: Proceedings of the 22nd International Conference on Machine Learning ACM, New York (2005), 265-272. (2005) DOI10.1145/1102351.1102385
- Hagan, J., Gillis, A. R., Chan, J., 10.1111/j.1533-8525.1978.tb01183.x, Sociological Quarterly 19 (1978), 386-398. (1978) DOI10.1111/j.1533-8525.1978.tb01183.x
- Hensman, J., Fusi, N., Lawrence, N. D., Gaussian processes for big data, Available at https://arxiv.org/abs/1309.6835 (2013), 9 pages. (2013)
- Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R., 10.1016/j.ijheatfluidflow.2006.02.006, Int. J. Heat Fluid Flow 27 (2006), 585-593. (2006) DOI10.1016/j.ijheatfluidflow.2006.02.006
- Kelly, F. J., Fussell, J. C., 10.1016/j.atmosenv.2018.11.058, Atmospheric Environment 200 (2019), 90-109. (2019) DOI10.1016/j.atmosenv.2018.11.058
- Kingma, D. P., Welling, M., Auto-encoding variational Bayes, Available at https://arxiv.org/abs/1312.6114 (2013), 14 pages. (2013)
- Krause, A., Singh, A., Guestrin, C., Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies, J. Mach. Learn. Res. 9 (2008), 235-284. (2008) Zbl1225.68192
- Kullback, S., Leibler, R. A., 10.1214/aoms/1177729694, Ann. Math. Stat. 22 (1951), 79-86. (1951) Zbl0042.38403MR0039968DOI10.1214/aoms/1177729694
- Lin, C.-C., Wang, L. L., 10.1016/j.buildenv.2013.03.008, Building and Environment 64 (2013), 169-176. (2013) DOI10.1016/j.buildenv.2013.03.008
- Liu, H., Ong, Y.-S., Shen, X., Cai, J., When Gaussian process meets big data: A review of scalable GPs, Available at https://arxiv.org/abs/1807.01065 (2018), 20 pages. (2018) MR4169962
- MacKay, D. J. C., Introduction to Gaussian processes, Neural Networks and Machine Learning NATO ASI Series F Computer and Systems Sciences 168. Springer, Berlin (1998), 133-166. (1998)
- M. I. Mead, O. A. M. Popoola, G. B. Stewart, P. Landshoff, M. Calleja, M. Hayes, J. J. Baldovi, M. W. McLeod, T. F. Hodgson, J. Dicks, A. Lewis, J. Cohen, R. Baron, J. R. Saffell, R. L. Jones, 10.1016/j.atmosenv.2012.11.060, Atmospheric Environment 70 (2013), 186-203. (2013) DOI10.1016/j.atmosenv.2012.11.060
- Pain, C. C., Umpleby, A. P., Oliveira, C. R. E. de, Goddard, A. J. H., 10.1016/S0045-7825(00)00294-2, Comput. Methods Appl. Mech. Eng. 190 (2001), 3771-3796. (2001) Zbl1008.76041DOI10.1016/S0045-7825(00)00294-2
- Papamakarios, G., Pavlakou, T., Murray, I., Masked autoregressive flow for density estimation, Advances in Neural Information Processing Systems 30 (NIPS 2017) MIT Press, Cambridge (2017), 2338-2347. (2017)
- Pavlidis, D., Gorman, G. J., Gomes, J. L. M. A., Pain, C. C., ApSimon, H., 10.1007/s10546-010-9508-x, Boundary-Layer Meteorology 136 (2010), 285-299. (2010) DOI10.1007/s10546-010-9508-x
- Quiñonero-Candela, J., Rasmussen, C. E., A unifying view of sparse approximate Gaussian process regression, J. Mach. Learn. Res. 6 (2005), 1939-1959. (2005) Zbl1222.68282MR2249877
- Ramakrishnan, N., Bailey-Kellogg, C., Tadepalliy, S., Pandey, V. N., 10.1137/1.9781611972757.38, Proceedings of the 2005 SIAM International Conference on Data Mining SIAM, Philadelphia (2005), 427-438. (2005) DOI10.1137/1.9781611972757.38
- Rasmussen, C. E., 10.1007/978-3-540-28650-9_4, Advanced Lectures on Machine Learning Lecture Notes in Computer Science 3176. Springer, Berlin (2003), 63-71. (2003) DOI10.1007/978-3-540-28650-9_4
- Rezende, D. J., Mohamed, S., Variational inference with normalizing flows, Available at https://arxiv.org/abs/1505.05770 (2015), 10 pages. (2015)
- Smagorinsky, J., 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, Mon. Wea. Rev. 91 (1963), 99-164. (1963) DOI10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
- J. Song, S. Fan, W. Lin, L. Mottet, H. Woodward, M. Davies Wykes, R. Arcucci, D. Xiao, J.-E. Debay, H. ApSimon, E. Aristodenou, D. Birch, M. Carpentieri, F. Fang, M. Herzog, G. R. Hunt, R. L. Jones, C. Pain, D. Pavlidis, A. G. Robins, C. A. Short, P. F. Linden, 10.1080/09613218.2018.1468158, Building Research & Information 46 (2018), 809-828. (2018) DOI10.1080/09613218.2018.1468158
- Titsias, M. K., Variational learning of inducing variables in sparse Gaussian processes, Proc. Mach. Learn. Res. 5 (2009), 567-574. (2009)
- Titsias, M. K., Variational Model Selection for Sparse Gaussian Process Regression, Technical report, University of Manchester, Manchester (2009). (2009)
- Tran, V. H., Copula variational Bayes inference via information geometry, Available at https://arxiv.org/abs/1803.10998 (2018), 23 pages . (2018)
- Tran, D., Ranganath, R., Blei, D. M., The variational Gaussian process, Available at https://arxiv.org/abs/1511.06499 (2015), 14 pages. (2015)
- Wickham, H., 10.1007/978-3-319-24277-4, Use R! Springer, Cham (2016). (2016) Zbl1397.62006DOI10.1007/978-3-319-24277-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.