Remarks on cardinal inequalities in convergence spaces
Mathematica Bohemica (2021)
- Volume: 146, Issue: 2, page 215-227
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topYoshitomi, Kazushi. "Remarks on cardinal inequalities in convergence spaces." Mathematica Bohemica 146.2 (2021): 215-227. <http://eudml.org/doc/297707>.
@article{Yoshitomi2021,
abstract = {We extend the Noble and Ulmer theorem and the Juhász and Hajnal theorems in set-theoretic topology. We show that a statement analogous to that in the former theorem is valid for a family of almost topological convergences, whereas statements analogous to those in the latter theorems hold for a pretopologically Hausdorff convergence.},
author = {Yoshitomi, Kazushi},
journal = {Mathematica Bohemica},
keywords = {convergence space; cardinal function; inequality; set-theoretic topology},
language = {eng},
number = {2},
pages = {215-227},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on cardinal inequalities in convergence spaces},
url = {http://eudml.org/doc/297707},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Yoshitomi, Kazushi
TI - Remarks on cardinal inequalities in convergence spaces
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 215
EP - 227
AB - We extend the Noble and Ulmer theorem and the Juhász and Hajnal theorems in set-theoretic topology. We show that a statement analogous to that in the former theorem is valid for a family of almost topological convergences, whereas statements analogous to those in the latter theorems hold for a pretopologically Hausdorff convergence.
LA - eng
KW - convergence space; cardinal function; inequality; set-theoretic topology
UR - http://eudml.org/doc/297707
ER -
References
top- Alexandroff, P. S., Urysohn, P. S., Über kompakte topologische Räume, Akad. Nauk SSSR, Trudy Mat. Inst. Steklov 31 (1950), 94 pages Russian. (1950) Zbl0041.31504MR0043445
- Čech, E., Topological Spaces, Publishing House of the Czechoslovak Academy of Sciences, Prague; John Wiley & Sons, London (1966). (1966) Zbl0141.39401MR0211373
- Choquet, G., Convergences, Ann. Univ. Grenoble, Sect. Sci. Math. Phys., II. Ser. 23 (1948), 57-112. (1948) Zbl0031.28101MR0025716
- Dolecki, S., Gauld, D., 10.1016/j.topol.2006.11.009, Topology Appl. 154 (2007), 1565-1580 Erratum ibid. 159 2012 3658-3659. (2007) Zbl1119.54002MR2317063DOI10.1016/j.topol.2006.11.009
- Dolecki, S., Mynard, F., 10.1142/9012, World Scientific, Hackensack (2016). (2016) Zbl1345.54001MR3497013DOI10.1142/9012
- Katětov, M., 10.21136/CPMF.1940.121983, Čas. Pěst. Mat. Fys. 69 (1940), 36-49 German. (1940) Zbl0022.41203MR0001912DOI10.21136/CPMF.1940.121983
- Katětov, M., 10.21136/CPMF.1947.109025, Čas. Pěst. Mat. Fys. 72 (1947), 17-32. (1947) Zbl0041.51504MR0022069DOI10.21136/CPMF.1947.109025
- Reynolds, J. P., Hausdorff closedness in the convergence setting, Topol. Proc. 49 (2017), 135-152. (2017) Zbl1373.54006MR3546386
- Rudin, M. E., 10.1090/cbms/023, CBMS Regional Conference Series in Mathematics 23. AMS, Providence (1975). (1975) Zbl0318.54001MR0367886DOI10.1090/cbms/023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.