Risk probability optimization problem for finite horizon continuous time Markov decision processes with loss rate
Kybernetika (2021)
- Issue: 2, page 272-294
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHuo, Haifeng, and Wen, Xian. "Risk probability optimization problem for finite horizon continuous time Markov decision processes with loss rate." Kybernetika (2021): 272-294. <http://eudml.org/doc/297714>.
@article{Huo2021,
abstract = {This paper presents a study the risk probability optimality for finite horizon continuous-time Markov decision process with loss rate and unbounded transition rates. Under drift condition, which is slightly weaker than the regular condition, as detailed in existing literature on the risk probability optimality Semi-Markov decision processes, we prove that the value function is the unique solution of the corresponding optimality equation, and demonstrate the existence of a risk probability optimization policy using an iteration technique. Furthermore, we provide verification of the imposed condition with two examples of controlled birth-and-death system and risk control, and further demonstrate that a value iteration algorithm can be used to calculate the value function and develop an optimal policy.},
author = {Huo, Haifeng, Wen, Xian},
journal = {Kybernetika},
keywords = {continuous-time Markov decision processes; loss rate; risk probability criterion; finite horizon; optimal policy; unbounded transition rate},
language = {eng},
number = {2},
pages = {272-294},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Risk probability optimization problem for finite horizon continuous time Markov decision processes with loss rate},
url = {http://eudml.org/doc/297714},
year = {2021},
}
TY - JOUR
AU - Huo, Haifeng
AU - Wen, Xian
TI - Risk probability optimization problem for finite horizon continuous time Markov decision processes with loss rate
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 272
EP - 294
AB - This paper presents a study the risk probability optimality for finite horizon continuous-time Markov decision process with loss rate and unbounded transition rates. Under drift condition, which is slightly weaker than the regular condition, as detailed in existing literature on the risk probability optimality Semi-Markov decision processes, we prove that the value function is the unique solution of the corresponding optimality equation, and demonstrate the existence of a risk probability optimization policy using an iteration technique. Furthermore, we provide verification of the imposed condition with two examples of controlled birth-and-death system and risk control, and further demonstrate that a value iteration algorithm can be used to calculate the value function and develop an optimal policy.
LA - eng
KW - continuous-time Markov decision processes; loss rate; risk probability criterion; finite horizon; optimal policy; unbounded transition rate
UR - http://eudml.org/doc/297714
ER -
References
top- Boda, K., Filar, J. A., Lin, Y. L., , IEEE Trans. Automat. Control 49 (2004), 409-419. MR2062253DOI
- Bouakiz, M., Kebir, Y., , J. Optim. Theory Appl. 86 (1995), 1-15. MR1341504DOI
- Bertsekas, D., Shreve, S., Stochastic Optimal Control: The Discrete-Time Case., Academic Press Inc, New York 1978 MR0511544
- Bauerle, N., Rieder, U., Markov Decision Processes with Applications to Finance., Springer, Heidelberg 2011 MR2808878
- Feinberg, E., , Math. Operat. Res. 29 (2004), 492-524. MR2082616DOI
- Guo, X. P., Hernández-Lerma, O., Continuous-Time Markov Decision Process: Theorey and Applications., Springer-Verlag, Berlin 2009. MR2554588
- Guo, X. P., Piunovskiy, A., , Math. Oper. Res. 36 (2011), 105-132. MR2799395DOI
- Guo, X. P., Huang, X. X., Huang, Y. H., , Adv. Appl. Prob. 47 (2015), 1064-1087. MR3433296DOI
- Hernández-Lerma, O., Lasserre, J. B., Discrete-Time Markov Control Process: Basic Optimality Criteria., Springer-Verlag, New York 1996. MR1363487
- Huang, Y. H., Guo, X. P., , J. Math. Anal. Appl. 359 (2009), 404-420. MR2542184DOI
- Huang, Y. H., Guo, X. P., , Acta. Math. Appl. Sinica 27 (2011), 177-190. MR2784052DOI
- Huang, Y. H., Guo, X. P., Li, Z. F., , J. Math. Anal. Appl. 402 (2013), 378-391. MR3023265DOI
- Huang, X. X., Zou, X. L., Guo, X. P., , Sci. China Math. 58 (2015), 1923-1938. MR3383991DOI
- Huo, H. F., Zou, X. L., Guo, X. P., , Discrete Event Dynamic system: Theory Appl. 27 (2017), 675-699. MR3712415DOI
- Huo, H. F., Wen, X., , Kybernetika 55 (2019), 114-133. MR3935417DOI
- Huo, H. F., Guo, X.P., , IEEE trans. Automat. Control 65 (2020), 3199-3206. MR4120586DOI
- Jacod, J., , Z. Wahrscheinlichkeitstheorie und verwandte Gebiete 31 (1975), 235-253. MR0380978DOI
- Janssen, J., Manca, R., Semi-Markov Risk Models For Finance, Insurance, and Reliability., Springer-Verlag, New York 2006. MR2301626
- Liu, Q. L., Zou, X. L., , J. Dynamics Games 5 (2018), 143-163. MR3810203DOI
- Piunovskiy, A., Zhang, Y., , SIAM J. Control Optim. 49 (2011), 2032-2061. MR2837510DOI
- Ohtsubo, Y., Toyonaga, K., , J. Math. Anal. Appl. 271 (2002), 66-81. MR1923747DOI
- Ohtsubo, Y., , J. Oper. Res. Soc. Japan 46 (2003), 342-352. MR2011960DOI
- Ohtsubo, Y., Toyonaga, K., , Math. Methods Oper. Res. 60 (2004), 239-250. MR2099534DOI
- Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming., John Wiley, New York 1994. Zbl1184.90170MR1270015
- Sakaguchi, M., Ohtsubo, Y., , Appl. Math. Comput. 216 (2010), 2947-2958. MR2653110DOI
- Sobel, M. J., 10.2307/3213832, J. Appl. Probab. 19 (1982), 744-802. Zbl0503.90091MR0675143DOI10.2307/3213832
- Wei, Q. D., Guo, X. P., , Optimization 64 (2015), 1593-1623. MR3340650DOI
- White, D. J., , J. Math. Anal. Appl. Optim. 173 (1993), 634-646. MR1209345DOI
- Wu, C. B., Lin, Y. L., , J. Math. Anal. Appl. 231 (1999), 47-67. MR1676741DOI
- Wu, R., Fang, K., , Acta Math. Applic. Sinica 15 (1999), 352-360. MR1735505DOI
- Yu, S. X., Lin, Y. L., Yan, P. F., , J. Math. Anal. Appl. 225 (1998), 193-223. MR1639236DOI
- Xia, L., , Automatica 73 (2016), 269-278. MR3552085DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.