Gradedness of the set of rook placements in
Communications in Mathematics (2021)
- Volume: 29, Issue: 2, page 171-182
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topIgnatev, Mikhail V.. "Gradedness of the set of rook placements in $A_{n-1}$." Communications in Mathematics 29.2 (2021): 171-182. <http://eudml.org/doc/297726>.
@article{Ignatev2021,
abstract = {A rook placement is a subset of a root system consisting of positive roots with pairwise non-positive inner products. To each rook placement in a root system one can assign the coadjoint orbit of the Borel subgroup of a reductive algebraic group with this root system. Degenerations of such orbits induce a natural partial order on the set of rook placements. We study combinatorial structure of the set of rook placements in $A_\{n-1\}$ with respect to a slightly different order and prove that this poset is graded.},
author = {Ignatev, Mikhail V.},
journal = {Communications in Mathematics},
keywords = {Root system; rook placement; Borel subgroup; coadjoint orbit; graded poset},
language = {eng},
number = {2},
pages = {171-182},
publisher = {University of Ostrava},
title = {Gradedness of the set of rook placements in $A_\{n-1\}$},
url = {http://eudml.org/doc/297726},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Ignatev, Mikhail V.
TI - Gradedness of the set of rook placements in $A_{n-1}$
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 171
EP - 182
AB - A rook placement is a subset of a root system consisting of positive roots with pairwise non-positive inner products. To each rook placement in a root system one can assign the coadjoint orbit of the Borel subgroup of a reductive algebraic group with this root system. Degenerations of such orbits induce a natural partial order on the set of rook placements. We study combinatorial structure of the set of rook placements in $A_{n-1}$ with respect to a slightly different order and prove that this poset is graded.
LA - eng
KW - Root system; rook placement; Borel subgroup; coadjoint orbit; graded poset
UR - http://eudml.org/doc/297726
ER -
References
top- Andrè, C.A.M., 10.1006/jabr.2001.8734, J. Algebra, 241, 2001, 437-471, (2001) DOI10.1006/jabr.2001.8734
- Andrè, C.A.M., Neto, A.M., 10.1016/j.jalgebra.2006.04.030, J. Algebra, 305, 2006, 394-429, (2006) DOI10.1016/j.jalgebra.2006.04.030
- Bourbaki, N., Lie groups and Lie algebras, 2002, Springer, Chapters 4--6.. (2002)
- Humphreys, J.E., Linear algebraic groups, Grad. Texts in Math, 21, 1998, Springer, (1998)
- Humphreys, J.E, Reflection groups and Coxeter groups, 1990, Cambridge University Press, Cambridge, (1990)
- Ignatyev, M.V., 10.1007/s00031-012-9191-8, Transform. Groups, 17, 3, 2012, 747-780, arXiv:math.RT/1101.2189.. (2012) DOI10.1007/s00031-012-9191-8
- Ignatyev, M.V., The Bruhat-Chevalley order on involutions of the hyperoctahedral group and combinatorics of -orbit closures, Zapiski Nauchnykh Seminarov POMI, 400, 2012, 166-188, English translation: J. Math. Sci. 192 (2) (2013), 220--231; arXiv:math.RT/1112.2624.. (2012)
- Ignatyev, M.V., Orthogonal subsets of classical root systems and coadjoint orbits of unipotent groups, Mat. Zametki, 86, 1, 2009, 65-80, English translation: Math. Notes 86 (1) (2009), 65--80; arXiv:math.RT/0904.2841.. (2009)
- Ignatev, M.V., Orthogonal subsets of root systems and the orbit method, Algebra i Analiz, 22, 5, 2010, 104-130, English translation: St. Petersburg Math. J., 22 (5) (2011), 777--794; arXiv:math.RT/1007.5220.. (2010)
- Ignatyev, M.V., Vasyukhin, A.S., Rook placements in and combinatorics of -orbit closures, J. Lie Theory, 24, 4, 2014, 931-956, (2014)
- Incitti, F., Bruhat order on the involutions of classical Weyl groups, 2003, Ph.D. thesis, Dipartimento di Matematika ``Guido Castelnuovo'', Universit¸ di Roma ``La Sapienza.''. (2003)
- Incitti, F., 10.1023/B:JACO.0000048514.62391.f4, J. Alg. Combin, 20, 3, 2004, 243-261, (2004) DOI10.1023/B:JACO.0000048514.62391.f4
- Kerov, S.V., Rooks on ferrers boards and matrix integrals, Zapiski Nauchnykh Seminarov POMI, 240, 1997, 136-146, English translation: J. Math. Sci., 96 (5) (1999), 3531--3536.. (1997)
- Kirillov, A.A., 10.1070/RM1962v017n04ABEH004118, Russian Math. Surveys, 17, 1962, 53-110, (1962) DOI10.1070/RM1962v017n04ABEH004118
- Kirillov, A.A., 10.1090/gsm/064, 64, 2004, American Mathematical Soc., (2004) DOI10.1090/gsm/064
- Melnikov, A., 10.1006/jabr.1999.8056, J. Algebra, 223, 1, 2000, 101-108, (2000) DOI10.1006/jabr.1999.8056
- Melnikov, A., 10.1007/s00031-004-1111-0, Transform. Groups, 11, 2, 2006, 217-247, (2006) DOI10.1007/s00031-004-1111-0
- Panov, A.N., Involutions in and associated coadjoint orbits, Zapiski Nauchnykh Seminarov POMI, 349, 2007, 150-173, English translation: J. Math. Sci. 151 (3) (2008), 3018--3031.. (2007)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.