Symmetric implicational restriction method of fuzzy inference
Yiming Tang; Wenbin Wu; Youcheng Zhang; Witold Pedrycz; Fuji Ren; Jun Liu
Kybernetika (2021)
- Volume: 57, Issue: 4, page 688-713
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTang, Yiming, et al. "Symmetric implicational restriction method of fuzzy inference." Kybernetika 57.4 (2021): 688-713. <http://eudml.org/doc/297737>.
@article{Tang2021,
abstract = {The symmetric implicational method is revealed from a different perspective based upon the restriction theory, which results in a novel fuzzy inference scheme called the symmetric implicational restriction method. Initially, the SIR-principles are put forward, which constitute optimized versions of the triple I restriction inference mechanism. Next, the existential requirements of basic solutions are given. The supremum (or infimum) of its basic solutions is achieved from some properties of fuzzy implications. The conditions are obtained for the supremum to become the maximum (or the infimum to be the minimum). Lastly, four concrete examples are provided, and it is shown that the new method is better than the triple I restriction method, because the former is able to let the inference more compact, and lead to more and superior particular inference schemes.},
author = {Tang, Yiming, Wu, Wenbin, Zhang, Youcheng, Pedrycz, Witold, Ren, Fuji, Liu, Jun},
journal = {Kybernetika},
keywords = {fuzzy inference; fuzzy entropy; compositional rule of inference; continuity},
language = {eng},
number = {4},
pages = {688-713},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Symmetric implicational restriction method of fuzzy inference},
url = {http://eudml.org/doc/297737},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Tang, Yiming
AU - Wu, Wenbin
AU - Zhang, Youcheng
AU - Pedrycz, Witold
AU - Ren, Fuji
AU - Liu, Jun
TI - Symmetric implicational restriction method of fuzzy inference
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 688
EP - 713
AB - The symmetric implicational method is revealed from a different perspective based upon the restriction theory, which results in a novel fuzzy inference scheme called the symmetric implicational restriction method. Initially, the SIR-principles are put forward, which constitute optimized versions of the triple I restriction inference mechanism. Next, the existential requirements of basic solutions are given. The supremum (or infimum) of its basic solutions is achieved from some properties of fuzzy implications. The conditions are obtained for the supremum to become the maximum (or the infimum to be the minimum). Lastly, four concrete examples are provided, and it is shown that the new method is better than the triple I restriction method, because the former is able to let the inference more compact, and lead to more and superior particular inference schemes.
LA - eng
KW - fuzzy inference; fuzzy entropy; compositional rule of inference; continuity
UR - http://eudml.org/doc/297737
ER -
References
top- Baczyński, M., Jayaram, B., , Fuzzy Sets Syst. 158 (2007), 1713-1727. DOI
- Dai, S. S., , J. Intell. Fuzzy Syst. 39 (2020), 1089-1095. DOI
- Dai, S. S., Pei, D. W., Guo, D. H., , Int. J. Approx. Reason. 54 (2013), 653-666. DOI
- Fodor, J., Roubens, M., Fuzzy Preference Modeling and Multicriteria Decision Support., Kluwer Academic Publishers, Dordrecht, 1994.
- Hájek, P., Metamathematics of Fuzzy Logic., Kluwer Academic Publishers, Dordrecht, 1998. Zbl1007.03022
- Hou, J., You, F., Li, H. X., , Prog. Nat. Sci. 15 (2005), 29-37. DOI
- Li, H. X., , Sci. China Ser. F Inf. Sci. 49 (2006), 339-363. DOI
- Li, D. C., Li, Y. M., , Int. J. Approx. Reason. 53 (2012) 892-900. DOI
- Li, H. X., You, F., Peng, J. Y., , Prog. Nat. Sci. 14 (2004), 15-20. DOI
- Liu, H. W., Wang, G. J., , Inf. Sci. 177 (2007), 956-966. DOI
- Luo, M. X., Liu, B., , J. Log. Algebr. Methods 86 (2017), 298-307. DOI
- Luo, M. X., Yao, N., , Int. J. Approx. Reason. 54 (2013), 640-652. DOI
- Luo, M. X, Zhang, K., , Int. J. Approx. Reason. 62 (2015), 61-72. DOI
- Kaur, P., Goyal, M., Lu, J., , IEEE Trans. Fuzzy Syst. 25 (2017) 425-438. DOI
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht, 2000. Zbl1087.20041
- Mas, M., Monserrat, M., Torrens, J., Trillas, E., , IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121. DOI
- Novák, V., Perfilieva, I., Močkoř, J., Mathematical Principles of Fuzzy Logic., Kluwer Academic Publishes, Boston, Dordrecht, 1999. Zbl0940.03028
- Peng, J. Y., , Prog. Nat. Sci. 15 (2005), 539-546. DOI
- Song, S. J., Feng, C. B., Wu, C. X., Theory of restriction degree of triple I method with total inference rules of fuzzy reasoning., Prog. Nat. Sci. 11 (2001), 58-66.
- Song, S. J., Wu, C., 10.1007/BF02714092, Sci. China, Ser. F, Inf. Sci. 45 (2002), 344-364. DOI10.1007/BF02714092
- Pei, D. W., , Fuzzy Set Syst. 131 (2002), 297-302. DOI
- Pei, D. W., , Soft Comput. 8 (2004), 539-545. DOI
- Pei, D. W., , Int. J. Approx. Reason. 53 (2012), 837-846. DOI
- Pedrycz, W., Granular Computing: Analysis and Design of Intelligent Systems., CRC Press/Francis and Taylor, Boca Raton 2013.
- Pedrycz, W., , Fuzzy Set Syst. 274 (2015), 12-17. MR3355341DOI
- Pedrycz, W., Wang, X. M., , IEEE Trans. Fuzzy Syst. 24 (2016), 489-496. DOI
- Tang, Y. M., Yang, X. Z., , Int. J. Approx. Reason. 54 (2013), 1034-1048. DOI
- Tang, Y. M., Pedrycz, W., , Int. J. Approx. Reason. 92 (2018), 212-231. DOI
- Wang, L. X., A Course in Fuzzy Systems and Control., Prentice-Hall, Englewood Cliffs, NJ 1997.
- Wang, G. J., , Inform. Sci. 117 (1999), 47-88. DOI
- Wang, G. J., Fu, L., , Comput. Math. Appl. 49 (2005), 923-932. DOI
- Wang, G. J., Zhou, H. J., Introduction to Mathematical Logic and Resolution Principle., Co-published by Science Press and Alpha International Science Ltd., 2009.
- Zadeh, L. A., , IEEE Trans. Syst. Man Cyber. 3 (1973), 28-44. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.