On the Diophantine equation
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 689-696
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTong, Ruizhou. "On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$." Czechoslovak Mathematical Journal 71.3 (2021): 689-696. <http://eudml.org/doc/297745>.
@article{Tong2021,
abstract = {Let $p$ be an odd prime. By using the elementary methods we prove that: (1) if $2\nmid x$, $p\equiv \pm 3\hspace\{4.44443pt\}(\@mod \; 8),$ the Diophantine equation $(2^\{x\}-1)(p^\{y\}-1)=2z^\{2\}$ has no positive integer solution except when $p=3$ or $p$ is of the form $p=2a_\{0\}^\{2\}+1$, where $a_\{0\}>1$ is an odd positive integer. (2) if $2\nmid x$, $2\mid y$, $y\ne 2,4,$ then the Diophantine equation $(2^\{x\}-1)(p^\{y\}-1)=2z^\{2\}$ has no positive integer solution.},
author = {Tong, Ruizhou},
journal = {Czechoslovak Mathematical Journal},
keywords = {elementary method; Diophantine equation; positive integer solution},
language = {eng},
number = {3},
pages = {689-696},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$},
url = {http://eudml.org/doc/297745},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Tong, Ruizhou
TI - On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 689
EP - 696
AB - Let $p$ be an odd prime. By using the elementary methods we prove that: (1) if $2\nmid x$, $p\equiv \pm 3\hspace{4.44443pt}(\@mod \; 8),$ the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution except when $p=3$ or $p$ is of the form $p=2a_{0}^{2}+1$, where $a_{0}>1$ is an odd positive integer. (2) if $2\nmid x$, $2\mid y$, $y\ne 2,4,$ then the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution.
LA - eng
KW - elementary method; Diophantine equation; positive integer solution
UR - http://eudml.org/doc/297745
ER -
References
top- Cao, Z., 10.1090/S0002-9939-1986-0848864-4, Proc. Am. Math. Soc. 98 (1986), 11-16. (1986) Zbl0596.10016MR0848864DOI10.1090/S0002-9939-1986-0848864-4
- Cao, Z., Introduction to Diophantine Equations, Harbin Institute of Technology Press, Harbin (1989), Chinese. (1989) Zbl0849.11029MR1029025
- Cohn, J. H. E., 10.1023/A:1019688312555, Period. Math. Hung. 44 (2002), 169-175. (2002) Zbl1012.11024MR1918683DOI10.1023/A:1019688312555
- Guo, X., 10.1007/s10998-012-6964-8, Period. Math. Hung. 66 (2013), 87-93. (2013) Zbl1274.11089MR3018202DOI10.1007/s10998-012-6964-8
- Hajdu, L., Szalay, L., 10.1023/A:1010335509489, Period. Math. Hung. 40 (2000), 141-145. (2000) Zbl0973.11015MR1805312DOI10.1023/A:1010335509489
- He, G., A note on the exponential Diophantine equation , Pure Appl. Math. 27 (2011), 581-585 Chinese. (2011) Zbl1249.11056MR2906439
- Keskin, R., 10.1007/s12044-019-0520-x, Proc. Indian Acad. Sci., Math. Sci. 129 (2019), Article ID 69, 12 pages. (2019) Zbl1422.11071MR3993857DOI10.1007/s12044-019-0520-x
- Luo, J., On the Diophantine equation , J. Sichuan Univ., Nat. Sci. Ed. 36 (1999), 1022-1026 Chinese. (1999) Zbl0948.11016MR1746962
- Noubissie, A., Togbé, A., 10.33039/ami.2019.11.002, Ann. Math. Inform. 50 (2019), 159-165. (2019) Zbl07174847MR4048812DOI10.33039/ami.2019.11.002
- Szalay, L., On the Diophantine equation , Publ. Math. 57 (2000), 1-9. (2000) Zbl0961.11013MR1771666
- Tang, M., 10.3770/j.issn:1000-341X.2011.06.014, J. Math. Res. Expo. 6 (2011), 1064-1066. (2011) Zbl1265.11065MR2896318DOI10.3770/j.issn:1000-341X.2011.06.014
- Waall, R. W. van der, On the Diophantine equations , , , Simon Stevin 46 (1972), 39-51. (1972) Zbl0246.10011MR0316374
- Walsh, P. G., On Diophantine equations of the form , Tatra Mt. Math. Publ. 20 (2000), 87-89. (2000) Zbl0992.11029MR1845448
- Yuan, P., Zhang, Z., 10.5486/PMD.2012.5004, Publ. Math. 80 (2012), 327-331. (2012) Zbl1263.11045MR2943006DOI10.5486/PMD.2012.5004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.