On the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2

Ruizhou Tong

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 3, page 689-696
  • ISSN: 0011-4642

Abstract

top
Let p be an odd prime. By using the elementary methods we prove that: (1) if 2 x , p ± 3 ( mod 8 ) , the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution except when p = 3 or p is of the form p = 2 a 0 2 + 1 , where a 0 > 1 is an odd positive integer. (2) if 2 x , 2 y , y 2 , 4 , then the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution.

How to cite

top

Tong, Ruizhou. "On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$." Czechoslovak Mathematical Journal 71.3 (2021): 689-696. <http://eudml.org/doc/297745>.

@article{Tong2021,
abstract = {Let $p$ be an odd prime. By using the elementary methods we prove that: (1) if $2\nmid x$, $p\equiv \pm 3\hspace\{4.44443pt\}(\@mod \; 8),$ the Diophantine equation $(2^\{x\}-1)(p^\{y\}-1)=2z^\{2\}$ has no positive integer solution except when $p=3$ or $p$ is of the form $p=2a_\{0\}^\{2\}+1$, where $a_\{0\}>1$ is an odd positive integer. (2) if $2\nmid x$, $2\mid y$, $y\ne 2,4,$ then the Diophantine equation $(2^\{x\}-1)(p^\{y\}-1)=2z^\{2\}$ has no positive integer solution.},
author = {Tong, Ruizhou},
journal = {Czechoslovak Mathematical Journal},
keywords = {elementary method; Diophantine equation; positive integer solution},
language = {eng},
number = {3},
pages = {689-696},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$},
url = {http://eudml.org/doc/297745},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Tong, Ruizhou
TI - On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 689
EP - 696
AB - Let $p$ be an odd prime. By using the elementary methods we prove that: (1) if $2\nmid x$, $p\equiv \pm 3\hspace{4.44443pt}(\@mod \; 8),$ the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution except when $p=3$ or $p$ is of the form $p=2a_{0}^{2}+1$, where $a_{0}>1$ is an odd positive integer. (2) if $2\nmid x$, $2\mid y$, $y\ne 2,4,$ then the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution.
LA - eng
KW - elementary method; Diophantine equation; positive integer solution
UR - http://eudml.org/doc/297745
ER -

References

top
  1. Cao, Z., 10.1090/S0002-9939-1986-0848864-4, Proc. Am. Math. Soc. 98 (1986), 11-16. (1986) Zbl0596.10016MR0848864DOI10.1090/S0002-9939-1986-0848864-4
  2. Cao, Z., Introduction to Diophantine Equations, Harbin Institute of Technology Press, Harbin (1989), Chinese. (1989) Zbl0849.11029MR1029025
  3. Cohn, J. H. E., 10.1023/A:1019688312555, Period. Math. Hung. 44 (2002), 169-175. (2002) Zbl1012.11024MR1918683DOI10.1023/A:1019688312555
  4. Guo, X., 10.1007/s10998-012-6964-8, Period. Math. Hung. 66 (2013), 87-93. (2013) Zbl1274.11089MR3018202DOI10.1007/s10998-012-6964-8
  5. Hajdu, L., Szalay, L., 10.1023/A:1010335509489, Period. Math. Hung. 40 (2000), 141-145. (2000) Zbl0973.11015MR1805312DOI10.1023/A:1010335509489
  6. He, G., A note on the exponential Diophantine equation ( a m - 1 ) ( b n - 1 ) = x 2 , Pure Appl. Math. 27 (2011), 581-585 Chinese. (2011) Zbl1249.11056MR2906439
  7. Keskin, R., 10.1007/s12044-019-0520-x, Proc. Indian Acad. Sci., Math. Sci. 129 (2019), Article ID 69, 12 pages. (2019) Zbl1422.11071MR3993857DOI10.1007/s12044-019-0520-x
  8. Luo, J., On the Diophantine equation a n x m ± 1 a n x ± 1 = y n + 1 , J. Sichuan Univ., Nat. Sci. Ed. 36 (1999), 1022-1026 Chinese. (1999) Zbl0948.11016MR1746962
  9. Noubissie, A., Togbé, A., 10.33039/ami.2019.11.002, Ann. Math. Inform. 50 (2019), 159-165. (2019) Zbl07174847MR4048812DOI10.33039/ami.2019.11.002
  10. Szalay, L., On the Diophantine equation ( 2 n - 1 ) ( 3 n - 1 ) = x 2 , Publ. Math. 57 (2000), 1-9. (2000) Zbl0961.11013MR1771666
  11. Tang, M., 10.3770/j.issn:1000-341X.2011.06.014, J. Math. Res. Expo. 6 (2011), 1064-1066. (2011) Zbl1265.11065MR2896318DOI10.3770/j.issn:1000-341X.2011.06.014
  12. Waall, R. W. van der, On the Diophantine equations x 2 + x + 1 = 3 v 2 , x 3 - 1 = 2 y 2 , x 3 + 1 = 2 y 2 , Simon Stevin 46 (1972), 39-51. (1972) Zbl0246.10011MR0316374
  13. Walsh, P. G., On Diophantine equations of the form ( x n - 1 ) ( y m - 1 ) = z 2 , Tatra Mt. Math. Publ. 20 (2000), 87-89. (2000) Zbl0992.11029MR1845448
  14. Yuan, P., Zhang, Z., 10.5486/PMD.2012.5004, Publ. Math. 80 (2012), 327-331. (2012) Zbl1263.11045MR2943006DOI10.5486/PMD.2012.5004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.