An improved regularity criteria for the MHD system based on two components of the solution
Applications of Mathematics (2021)
- Volume: 66, Issue: 3, page 451-460
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Zujin, and Zhang, Yali. "An improved regularity criteria for the MHD system based on two components of the solution." Applications of Mathematics 66.3 (2021): 451-460. <http://eudml.org/doc/297790>.
@article{Zhang2021,
abstract = {As observed by Yamazaki, the third component $b_3$ of the magnetic field can be estimated by the corresponding component $u_3$ of the velocity field in $L^\{\lambda \}$$(2\le \lambda \le 6)$ norm. This leads him to establish regularity criterion involving $u_3, j_3$ or $u_3,\omega _3$. Noticing that $\lambda $ can be greater than 6 in this paper, we can improve previous results.},
author = {Zhang, Zujin, Zhang, Yali},
journal = {Applications of Mathematics},
keywords = {MHD equations; regularity criteria},
language = {eng},
number = {3},
pages = {451-460},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An improved regularity criteria for the MHD system based on two components of the solution},
url = {http://eudml.org/doc/297790},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Zhang, Zujin
AU - Zhang, Yali
TI - An improved regularity criteria for the MHD system based on two components of the solution
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 451
EP - 460
AB - As observed by Yamazaki, the third component $b_3$ of the magnetic field can be estimated by the corresponding component $u_3$ of the velocity field in $L^{\lambda }$$(2\le \lambda \le 6)$ norm. This leads him to establish regularity criterion involving $u_3, j_3$ or $u_3,\omega _3$. Noticing that $\lambda $ can be greater than 6 in this paper, we can improve previous results.
LA - eng
KW - MHD equations; regularity criteria
UR - http://eudml.org/doc/297790
ER -
References
top- Cao, C., Wu, J., 10.1016/j.jde.2009.09.020, J. Differ. Equations 248 (2010), 2263-2274. (2010) Zbl1190.35046MR2595721DOI10.1016/j.jde.2009.09.020
- Chemin, J.-Y., Zhang, P., 10.24033/asens.2278, Ann. Sci. Éc. Norm. Supér. 49 (2016), 131-167. (2016) Zbl1342.35210MR3465978DOI10.24033/asens.2278
- Chen, Q., Miao, C., Zhang, Z., 10.1007/s00220-008-0545-y, Commun. Math. Phys. 284 (2008), 919-930. (2008) Zbl1168.35035MR2452599DOI10.1007/s00220-008-0545-y
- Duan, H., 10.1080/00036811.2011.556626, Appl. Anal. 91 (2012), 947-952. (2012) Zbl1247.35101MR2911243DOI10.1080/00036811.2011.556626
- Duvaut, G., Lions, J. L., 10.1007/BF00250512, Arch. Ration. Mech. Anal. 46 (1972), 241-279 French. (1972) Zbl0264.73027MR0346289DOI10.1007/BF00250512
- He, C., Xin, Z., 10.1016/j.jde.2004.07.002, J. Differ. Equations 213 (2005), 235-254. (2005) Zbl1072.35154MR2142366DOI10.1016/j.jde.2004.07.002
- Ji, E., Lee, J., 10.1016/j.jmaa.2010.03.015, J. Math. Anal. Appl. 369 (2010), 317-322. (2010) Zbl1196.35063MR2643871DOI10.1016/j.jmaa.2010.03.015
- Jia, X., 10.1016/j.aml.2015.05.017, Appl. Math. Lett. 50 (2015), 1-4. (2015) Zbl1327.35320MR3378940DOI10.1016/j.aml.2015.05.017
- Jia, X., Zhou, Y., 10.1016/j.nonrwa.2011.07.055, Nonlinear Anal., Real World Appl. 13 (2012), 410-418. (2012) Zbl1239.35032MR2846851DOI10.1016/j.nonrwa.2011.07.055
- Jia, X., Zhou, Y., 10.1088/0951-7715/28/9/3289, Nonlinearity 28 (2015), 3289-3307. (2015) Zbl1326.35276MR3403399DOI10.1088/0951-7715/28/9/3289
- Jia, X., Zhou, Y., 10.1007/s00021-015-0246-1, J. Math. Fluid Mech. 18 (2016), 187-206. (2016) Zbl1334.35240MR3461931DOI10.1007/s00021-015-0246-1
- Ni, L., Guo, Z., Zhou, Y., 10.1016/j.jmaa.2012.05.076, J. Math. Anal. Appl. 396 (2012), 108-118. (2012) Zbl1247.35095MR2956948DOI10.1016/j.jmaa.2012.05.076
- Penel, P., Pokorný, M., 10.1007/s00021-010-0038-6, J. Math. Fluid Mech. 13 (2011), 341-353. (2011) Zbl1270.35354MR2824487DOI10.1007/s00021-010-0038-6
- Sermange, M., Temam, R., 10.1002/cpa.3160360506, Commun. Pure Appl. Math. 36 (1983), 635-664. (1983) Zbl0524.76099MR0716200DOI10.1002/cpa.3160360506
- Yamazaki, K., 10.1007/s00021-014-0178-1, J. Math. Fluid Mech. 16 (2014), 551-570. (2014) Zbl1307.35237MR3247368DOI10.1007/s00021-014-0178-1
- Yamazaki, K., 10.1063/1.4868277, J. Math. Phys. 55 (2014), Article ID 031505, 16 pages. (2014) Zbl1286.76172MR3221239DOI10.1063/1.4868277
- Yamazaki, K., 10.1016/j.bulsci.2015.08.003, Bull. Sci. Math. 140 (2016), 575-614. (2016) Zbl1345.35081MR3509263DOI10.1016/j.bulsci.2015.08.003
- Yamazaki, K., 10.1016/j.na.2016.01.015, Nonlinear Anal., Theory Methods Appl., Ser. A 135 (2016), 73-83. (2016) Zbl1345.35080MR3473110DOI10.1016/j.na.2016.01.015
- Yamazaki, K., Horizontal Biot-Savart law in general dimension and an application to the 4D magneto-hydrodynamics, Differ. Integral Equ. 31 (2018), 301-328. (2018) Zbl06837099MR3738200
- Zhang, Z., 10.1016/j.na.2014.12.003, Nonlinear Anal., Theory Methods Appl., Ser. A 115 (2015), 41-49. (2015) Zbl1309.35095MR3305136DOI10.1016/j.na.2014.12.003
- Zhang, Z., 10.1007/s00033-014-0461-2, Z. Angew. Math. Phys. 66 (2015), 977-987. (2015) Zbl1329.35097MR3347420DOI10.1007/s00033-014-0461-2
- Zhang, Z., 10.1080/00036811.2016.1207245, Appl. Anal. 96 (2017), 2130-2139. (2017) Zbl1372.35064MR3667850DOI10.1080/00036811.2016.1207245
- Zhang, Z., Yao, Z.-a., Lu, M., Ni, L., 10.1063/1.3589966, J. Math. Phys. 52 (2011), Article ID 053103, 7 pages. (2011) Zbl1317.35180MR2839081DOI10.1063/1.3589966
- Zhou, Y., 10.3934/dcds.2005.12.881, Discrete Contin. Dyn. Syst. 12 (2005), 881-886. (2005) Zbl1068.35117MR2128731DOI10.3934/dcds.2005.12.881
- Zhou, Y., Fan, J., 10.1515/form.2011.079, Forum Math. 24 (2012), 691-708. (2012) Zbl1247.35115MR2949119DOI10.1515/form.2011.079
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.