Unbalanced unicyclic and bicyclic graphs with extremal spectral radius
Francesco Belardo; Maurizio Brunetti; Adriana Ciampella
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 417-433
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBelardo, Francesco, Brunetti, Maurizio, and Ciampella, Adriana. "Unbalanced unicyclic and bicyclic graphs with extremal spectral radius." Czechoslovak Mathematical Journal 71.2 (2021): 417-433. <http://eudml.org/doc/297792>.
@article{Belardo2021,
abstract = {A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \lbrace | \lambda _i(\Gamma ) | \colon 1 \le i \le n \rbrace $, where $\lambda _1(\Gamma ) \ge \cdots \ge \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\mathfrak \{U\}_n$ and $\mathfrak \{B\}_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.},
author = {Belardo, Francesco, Brunetti, Maurizio, Ciampella, Adriana},
journal = {Czechoslovak Mathematical Journal},
keywords = {signed graph; spectral radius; bicyclic graph},
language = {eng},
number = {2},
pages = {417-433},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unbalanced unicyclic and bicyclic graphs with extremal spectral radius},
url = {http://eudml.org/doc/297792},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Belardo, Francesco
AU - Brunetti, Maurizio
AU - Ciampella, Adriana
TI - Unbalanced unicyclic and bicyclic graphs with extremal spectral radius
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 417
EP - 433
AB - A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \lbrace | \lambda _i(\Gamma ) | \colon 1 \le i \le n \rbrace $, where $\lambda _1(\Gamma ) \ge \cdots \ge \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\mathfrak {U}_n$ and $\mathfrak {B}_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.
LA - eng
KW - signed graph; spectral radius; bicyclic graph
UR - http://eudml.org/doc/297792
ER -
References
top- Akbari, S., Belardo, F., Dodongeh, E., Nematollahi, M. A., 10.1016/j.laa.2018.05.012, Linear Algebra Appl. 553 (2018), 307-327. (2018) Zbl1391.05126MR3809382DOI10.1016/j.laa.2018.05.012
- Akbari, S., Belardo, F., Heydari, F., Maghasedi, M., Souri, M., 10.1016/j.laa.2019.06.016, Linear Algebra Appl. 581 (2019), 145-162. (2019) Zbl1420.05070MR3982012DOI10.1016/j.laa.2019.06.016
- Akbari, S., Haemers, W. H., Maimani, H. R., Majd, L. Parsaei, 10.1016/j.laa.2018.04.021, Linear Algebra Appl. 553 (2018), 104-116. (2018) Zbl1391.05156MR3809370DOI10.1016/j.laa.2018.04.021
- Belardo, F., Brunetti, M., 10.1080/03081087.2018.1494122, Linear Multilinear Algebra 67 (2019), 2410-2426. (2019) Zbl1425.05067MR4017722DOI10.1080/03081087.2018.1494122
- Belardo, F., Brunetti, M., Ciampella, A., 10.1016/j.laa.2018.07.026, Linear Algebra Appl. 557 (2018), 201-233. (2018) Zbl1396.05066MR3848268DOI10.1016/j.laa.2018.07.026
- Belardo, F., Cioabă, S., Koolen, J., Wang, J., 10.26493/2590-9770.1286.d7b, Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. (2018) Zbl1421.05052MR3997096DOI10.26493/2590-9770.1286.d7b
- Belardo, F., Marzi, E. M. Li, Simić, S. K., 10.1016/j.laa.2006.01.008, Linear Algebra Appl. 416 (2006), 1048-1059. (2006) Zbl1092.05043MR2242480DOI10.1016/j.laa.2006.01.008
- Brualdi, R. A., Solheid, E. S., On the spectral radius of connected graphs, Publ. Inst. Math., Nouv. Sér. 39 (1986), 45-54. (1986) Zbl0603.05028MR0869175
- Brunetti, M., 10.1478/AAPP.96S2A2, Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat. Nat. 96 (2018), Article A2, 10 pages. (2018) MR3900933DOI10.1478/AAPP.96S2A2
- Chang, A., Tian, F., Yu, A., 10.1016/j.disc.2004.02.005, Discrete Math. 283 (2004), 51-59. (2004) Zbl1064.05118MR2060353DOI10.1016/j.disc.2004.02.005
- Cvetković, D., Rowlinson, P., 10.1007/BF01788525, Graphs Comb. 3 (1987), 7-23. (1987) Zbl0623.05038MR0932109DOI10.1007/BF01788525
- Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9781139086547, Encyclopedia of Mathematics and Its Applications 66. Cambridge University Press, Cambridge (1997). (1997) Zbl0878.05057MR1440854DOI10.1017/CBO9781139086547
- Guo, S.-G., 10.1016/j.laa.2005.05.022, Linear Algebra Appl. 408 (2005), 78-85. (2005) Zbl1073.05550MR2166856DOI10.1016/j.laa.2005.05.022
- Guo, S.-G., 10.1016/j.laa.2006.09.011, Linear Algebra Appl. 422 (2007), 119-132. (2007) Zbl1112.05064MR2298999DOI10.1016/j.laa.2006.09.011
- McKee, J., Smyth, C., 10.1016/j.jalgebra.2007.05.019, J. Algebra 317 (2007), 260-290. (2007) Zbl1140.15007MR2360149DOI10.1016/j.jalgebra.2007.05.019
- Simić, S. K., On the largest eigenvalue of unicyclic graphs, Publ. Inst. Math., Nouv. Sér. 42 (1987), 13-19. (1987) Zbl0641.05040MR0937447
- Simić, S. K., On the largest eigenvalue of bicyclic graphs, Publ. Inst. Math., Nouv. Sér. 46 (1989), 1-6. (1989) Zbl0747.05058MR1060049
- Stanić, Z., 10.1016/j.laa.2019.03.011, Linear Algebra Appl. 573 (2019), 80-89. (2019) Zbl1411.05109MR3933292DOI10.1016/j.laa.2019.03.011
- Stevanović, D., 10.1016/c2014-0-02233-2, Elsevier Academic Press, Amsterdam (2015). (2015) Zbl1309.05001DOI10.1016/c2014-0-02233-2
- Yu, A., Tian, F., On the spectral radius of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 52 (2004), 91-101. (2004) Zbl1080.05522MR2104641
- Zaslavsky, T., 10.1016/0095-8956(89)90063-4, J. Comb. Theory, Ser. B 47 (1989), 32-52. (1989) Zbl0714.05057MR1007712DOI10.1016/0095-8956(89)90063-4
- Zaslavsky, T., Matrices in the theory of signed simple graphs, Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. (2010) Zbl1231.05120MR2766941
- Zaslavsky, T., 10.37236/29, Electron. J. Comb., Dynamic Surveys 5 (1998), Article ID DS8, 127 pages. (1998) Zbl0898.05001MR1744869DOI10.37236/29
- Zaslavsky, T., 10.37236/31, Electron. J. Comb., Dynamic Survey 5 (1998), Article ID DS9, 41 pages. (1998) Zbl0898.05002MR1744870DOI10.37236/31
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.