Unbalanced unicyclic and bicyclic graphs with extremal spectral radius

Francesco Belardo; Maurizio Brunetti; Adriana Ciampella

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 417-433
  • ISSN: 0011-4642

Abstract

top
A signed graph Γ is a graph whose edges are labeled by signs. If Γ has n vertices, its spectral radius is the number ρ ( Γ ) : = max { | λ i ( Γ ) | : 1 i n } , where λ 1 ( Γ ) λ n ( Γ ) are the eigenvalues of the signed adjacency matrix A ( Γ ) . Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes 𝔘 n and 𝔅 n of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.

How to cite

top

Belardo, Francesco, Brunetti, Maurizio, and Ciampella, Adriana. "Unbalanced unicyclic and bicyclic graphs with extremal spectral radius." Czechoslovak Mathematical Journal 71.2 (2021): 417-433. <http://eudml.org/doc/297792>.

@article{Belardo2021,
abstract = {A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \lbrace | \lambda _i(\Gamma ) | \colon 1 \le i \le n \rbrace $, where $\lambda _1(\Gamma ) \ge \cdots \ge \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\mathfrak \{U\}_n$ and $\mathfrak \{B\}_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.},
author = {Belardo, Francesco, Brunetti, Maurizio, Ciampella, Adriana},
journal = {Czechoslovak Mathematical Journal},
keywords = {signed graph; spectral radius; bicyclic graph},
language = {eng},
number = {2},
pages = {417-433},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unbalanced unicyclic and bicyclic graphs with extremal spectral radius},
url = {http://eudml.org/doc/297792},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Belardo, Francesco
AU - Brunetti, Maurizio
AU - Ciampella, Adriana
TI - Unbalanced unicyclic and bicyclic graphs with extremal spectral radius
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 417
EP - 433
AB - A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \lbrace | \lambda _i(\Gamma ) | \colon 1 \le i \le n \rbrace $, where $\lambda _1(\Gamma ) \ge \cdots \ge \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\mathfrak {U}_n$ and $\mathfrak {B}_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.
LA - eng
KW - signed graph; spectral radius; bicyclic graph
UR - http://eudml.org/doc/297792
ER -

References

top
  1. Akbari, S., Belardo, F., Dodongeh, E., Nematollahi, M. A., 10.1016/j.laa.2018.05.012, Linear Algebra Appl. 553 (2018), 307-327. (2018) Zbl1391.05126MR3809382DOI10.1016/j.laa.2018.05.012
  2. Akbari, S., Belardo, F., Heydari, F., Maghasedi, M., Souri, M., 10.1016/j.laa.2019.06.016, Linear Algebra Appl. 581 (2019), 145-162. (2019) Zbl1420.05070MR3982012DOI10.1016/j.laa.2019.06.016
  3. Akbari, S., Haemers, W. H., Maimani, H. R., Majd, L. Parsaei, 10.1016/j.laa.2018.04.021, Linear Algebra Appl. 553 (2018), 104-116. (2018) Zbl1391.05156MR3809370DOI10.1016/j.laa.2018.04.021
  4. Belardo, F., Brunetti, M., 10.1080/03081087.2018.1494122, Linear Multilinear Algebra 67 (2019), 2410-2426. (2019) Zbl1425.05067MR4017722DOI10.1080/03081087.2018.1494122
  5. Belardo, F., Brunetti, M., Ciampella, A., 10.1016/j.laa.2018.07.026, Linear Algebra Appl. 557 (2018), 201-233. (2018) Zbl1396.05066MR3848268DOI10.1016/j.laa.2018.07.026
  6. Belardo, F., Cioabă, S., Koolen, J., Wang, J., 10.26493/2590-9770.1286.d7b, Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. (2018) Zbl1421.05052MR3997096DOI10.26493/2590-9770.1286.d7b
  7. Belardo, F., Marzi, E. M. Li, Simić, S. K., 10.1016/j.laa.2006.01.008, Linear Algebra Appl. 416 (2006), 1048-1059. (2006) Zbl1092.05043MR2242480DOI10.1016/j.laa.2006.01.008
  8. Brualdi, R. A., Solheid, E. S., On the spectral radius of connected graphs, Publ. Inst. Math., Nouv. Sér. 39 (1986), 45-54. (1986) Zbl0603.05028MR0869175
  9. Brunetti, M., 10.1478/AAPP.96S2A2, Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat. Nat. 96 (2018), Article A2, 10 pages. (2018) MR3900933DOI10.1478/AAPP.96S2A2
  10. Chang, A., Tian, F., Yu, A., 10.1016/j.disc.2004.02.005, Discrete Math. 283 (2004), 51-59. (2004) Zbl1064.05118MR2060353DOI10.1016/j.disc.2004.02.005
  11. Cvetković, D., Rowlinson, P., 10.1007/BF01788525, Graphs Comb. 3 (1987), 7-23. (1987) Zbl0623.05038MR0932109DOI10.1007/BF01788525
  12. Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9781139086547, Encyclopedia of Mathematics and Its Applications 66. Cambridge University Press, Cambridge (1997). (1997) Zbl0878.05057MR1440854DOI10.1017/CBO9781139086547
  13. Guo, S.-G., 10.1016/j.laa.2005.05.022, Linear Algebra Appl. 408 (2005), 78-85. (2005) Zbl1073.05550MR2166856DOI10.1016/j.laa.2005.05.022
  14. Guo, S.-G., 10.1016/j.laa.2006.09.011, Linear Algebra Appl. 422 (2007), 119-132. (2007) Zbl1112.05064MR2298999DOI10.1016/j.laa.2006.09.011
  15. McKee, J., Smyth, C., 10.1016/j.jalgebra.2007.05.019, J. Algebra 317 (2007), 260-290. (2007) Zbl1140.15007MR2360149DOI10.1016/j.jalgebra.2007.05.019
  16. Simić, S. K., On the largest eigenvalue of unicyclic graphs, Publ. Inst. Math., Nouv. Sér. 42 (1987), 13-19. (1987) Zbl0641.05040MR0937447
  17. Simić, S. K., On the largest eigenvalue of bicyclic graphs, Publ. Inst. Math., Nouv. Sér. 46 (1989), 1-6. (1989) Zbl0747.05058MR1060049
  18. Stanić, Z., 10.1016/j.laa.2019.03.011, Linear Algebra Appl. 573 (2019), 80-89. (2019) Zbl1411.05109MR3933292DOI10.1016/j.laa.2019.03.011
  19. Stevanović, D., 10.1016/c2014-0-02233-2, Elsevier Academic Press, Amsterdam (2015). (2015) Zbl1309.05001DOI10.1016/c2014-0-02233-2
  20. Yu, A., Tian, F., On the spectral radius of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 52 (2004), 91-101. (2004) Zbl1080.05522MR2104641
  21. Zaslavsky, T., 10.1016/0095-8956(89)90063-4, J. Comb. Theory, Ser. B 47 (1989), 32-52. (1989) Zbl0714.05057MR1007712DOI10.1016/0095-8956(89)90063-4
  22. Zaslavsky, T., Matrices in the theory of signed simple graphs, Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. (2010) Zbl1231.05120MR2766941
  23. Zaslavsky, T., 10.37236/29, Electron. J. Comb., Dynamic Surveys 5 (1998), Article ID DS8, 127 pages. (1998) Zbl0898.05001MR1744869DOI10.37236/29
  24. Zaslavsky, T., 10.37236/31, Electron. J. Comb., Dynamic Survey 5 (1998), Article ID DS9, 41 pages. (1998) Zbl0898.05002MR1744870DOI10.37236/31

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.