Compact operators and integral equations in the ℋ𝒦 space

Varayu Boonpogkrong

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 239-257
  • ISSN: 0011-4642

Abstract

top
The space ℋ𝒦 of Henstock-Kurzweil integrable functions on [ a , b ] is the uncountable union of Fréchet spaces ℋ𝒦 ( X ) . In this paper, on each Fréchet space ℋ𝒦 ( X ) , an F -norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the ℋ𝒦 ( X ) space. It is known that every control-convergent sequence in the ℋ𝒦 space always belongs to a ℋ𝒦 ( X ) space for some X . We illustrate how to apply results for Fréchet spaces ℋ𝒦 ( X ) to control-convergent sequences in the ℋ𝒦 space. Examples of compact linear operators are given. Existence of solutions to linear and Hammerstein integral equations is proved.

How to cite

top

Boonpogkrong, Varayu. "Compact operators and integral equations in the $\mathcal {HK}$ space." Czechoslovak Mathematical Journal 72.1 (2022): 239-257. <http://eudml.org/doc/297803>.

@article{Boonpogkrong2022,
abstract = {The space $\mathcal \{HK\}$ of Henstock-Kurzweil integrable functions on $[a,b]$ is the uncountable union of Fréchet spaces $\mathcal \{HK\}(X)$. In this paper, on each Fréchet space $\mathcal \{HK\}(X)$, an $F$-norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the $\mathcal \{HK\}(X)$ space. It is known that every control-convergent sequence in the $\mathcal \{HK\}$ space always belongs to a $\mathcal \{HK\}(X)$ space for some $X$. We illustrate how to apply results for Fréchet spaces $\mathcal \{HK\}(X)$ to control-convergent sequences in the $\mathcal \{HK\}$ space. Examples of compact linear operators are given. Existence of solutions to linear and Hammerstein integral equations is proved.},
author = {Boonpogkrong, Varayu},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral},
language = {eng},
number = {1},
pages = {239-257},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Compact operators and integral equations in the $\mathcal \{HK\}$ space},
url = {http://eudml.org/doc/297803},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Boonpogkrong, Varayu
TI - Compact operators and integral equations in the $\mathcal {HK}$ space
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 239
EP - 257
AB - The space $\mathcal {HK}$ of Henstock-Kurzweil integrable functions on $[a,b]$ is the uncountable union of Fréchet spaces $\mathcal {HK}(X)$. In this paper, on each Fréchet space $\mathcal {HK}(X)$, an $F$-norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the $\mathcal {HK}(X)$ space. It is known that every control-convergent sequence in the $\mathcal {HK}$ space always belongs to a $\mathcal {HK}(X)$ space for some $X$. We illustrate how to apply results for Fréchet spaces $\mathcal {HK}(X)$ to control-convergent sequences in the $\mathcal {HK}$ space. Examples of compact linear operators are given. Existence of solutions to linear and Hammerstein integral equations is proved.
LA - eng
KW - compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral
UR - http://eudml.org/doc/297803
ER -

References

top
  1. Alewine, J. A., Schechter, E., 10.14321/realanalexch.31.1.0023, Real Anal. Exch. 31 (2005/06), 23-44. (2005) Zbl1129.26003MR2218186DOI10.14321/realanalexch.31.1.0023
  2. Apostol, T. M., Mathematical Analysis: A Modern Approach to Advanced Calculus, Addison-Wesley Mathematics Series. Addison Wesley, Reading (1957). (1957) Zbl0077.05501MR0087718
  3. Bongiorno, B., Panchapagesan, T. V., 10.2307/44152670, Real Anal. Exch. 21 (1995/96), 604-614. (1995) Zbl0879.26028MR1407272DOI10.2307/44152670
  4. Chew, T. S., 10.1007/BFb0083096, New Integrals Lecture Notes in Mathematics 1419. Springer, Berlin (1990), 19-24. (1990) Zbl0731.26006MR1051917DOI10.1007/BFb0083096
  5. Chew, T. S., Lee, P. Y., 10.1017/S0004972700028689, Bull. Aust. Math. Soc. 42 (1990), 517-524. (1990) Zbl0715.26004MR1083288DOI10.1017/S0004972700028689
  6. Federson, M., Bianconi, R., 10.1515/JAA.2002.83, J. Appl. Anal. 8 (2002), 83-110. (2002) Zbl1043.45010MR1921473DOI10.1515/JAA.2002.83
  7. Hönig, C. S., 10.1016/s0304-0208(08)x7017-3, North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). (1975) Zbl0307.45002MR0499969DOI10.1016/s0304-0208(08)x7017-3
  8. Hönig, C. S., There is no natural Banach space norm on the space of Kurzweil-Henstock- Denjoy-Perron integrable functions, Seminário Brasileiro de Análise 30 (1989), 387-397. (1989) MR1763305
  9. Köthe, G., 10.1007/978-3-642-64988-2, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 159. Springer, Berlin (1969). (1969) Zbl0179.17001MR0248498DOI10.1007/978-3-642-64988-2
  10. Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E., Integral Operators in Spaces of Summable Functions, Monographs and Textbooks on Mechanics of Solids and Fluids. Noordhoff International Publishing, Leyden (1976). (1976) Zbl0312.47041MR0385645
  11. Kurzweil, J., 10.1142/4333, Series in Real Analysis 7. World Scientific, Singapore (2000). (2000) Zbl0954.28001MR1763305DOI10.1142/4333
  12. Lee, P. Y., 10.1142/0845, Series in Real Analysis 2. World Scientific, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
  13. Lee, P. Y., Topology of the Denjoy space, Southeast Asian Bull. Math. 38 (2014), 655-659. (2014) Zbl1324.26009MR3288602
  14. Méndez, L. Á. G., Reyna, J. A. E., Cárdenas, M. G. R., García, J. F. E., 10.1155/2013/476287, Abstr. Appl. Anal. 2013 (2013), Article ID 476287, 4 pages. (2013) Zbl1267.54018MR3034983DOI10.1155/2013/476287
  15. Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
  16. Morris, S. A., Noussair, E. S., The Schauder-Tychonoff fixed point theorem and applications, Mat. Čas., Slovensk. Akad. Vied 25 (1975), 165-172. (1975) Zbl0304.47049MR0397486
  17. Paúl, P. J., 10.36045/bbms/1102714029, Bull. Belg. Math. Soc. - Simon Stevin 8 (2001), 75-82. (2001) Zbl0997.46001MR1817532DOI10.36045/bbms/1102714029
  18. Royden, H. L., Real Analysis, Macmillan, New York (1989). (1989) Zbl0704.26006MR1013117
  19. Sari, D. K., Lee, P. Y., Zhao, D., A new topology on the space of primitives of Henstock-Kurzweil integrable functions, Southeast Asian Bull. Math. 42 (2018), 719-728. (2018) Zbl1428.26016MR3888440
  20. Schaefer, H. H., 10.1007/978-1-4684-9928-5, Graduate Texts in Mathematics 3. Springer, New York (1971). (1971) Zbl0217.16002MR0342978DOI10.1007/978-1-4684-9928-5
  21. Schwabik, Š., 10.21136/CPM.1972.108677, Čas. Pěst. Mat. 97 (1972), 297-330. (1972) Zbl0255.47057MR0450906DOI10.21136/CPM.1972.108677
  22. Thomson, B. S., 10.2307/44154028, Real Anal. Exch. 25 (1999/2000), 711-726. (1999) Zbl1016.26010MR1778525DOI10.2307/44154028
  23. Tvrdý, M., 10.21136/MB.1998.126306, Math. Bohem. 123 (1998), 177-212. (1998) Zbl0941.45001MR1673977DOI10.21136/MB.1998.126306

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.