Compact operators and integral equations in the space
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 239-257
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBoonpogkrong, Varayu. "Compact operators and integral equations in the $\mathcal {HK}$ space." Czechoslovak Mathematical Journal 72.1 (2022): 239-257. <http://eudml.org/doc/297803>.
@article{Boonpogkrong2022,
abstract = {The space $\mathcal \{HK\}$ of Henstock-Kurzweil integrable functions on $[a,b]$ is the uncountable union of Fréchet spaces $\mathcal \{HK\}(X)$. In this paper, on each Fréchet space $\mathcal \{HK\}(X)$, an $F$-norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the $\mathcal \{HK\}(X)$ space. It is known that every control-convergent sequence in the $\mathcal \{HK\}$ space always belongs to a $\mathcal \{HK\}(X)$ space for some $X$. We illustrate how to apply results for Fréchet spaces $\mathcal \{HK\}(X)$ to control-convergent sequences in the $\mathcal \{HK\}$ space. Examples of compact linear operators are given. Existence of solutions to linear and Hammerstein integral equations is proved.},
author = {Boonpogkrong, Varayu},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral},
language = {eng},
number = {1},
pages = {239-257},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Compact operators and integral equations in the $\mathcal \{HK\}$ space},
url = {http://eudml.org/doc/297803},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Boonpogkrong, Varayu
TI - Compact operators and integral equations in the $\mathcal {HK}$ space
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 239
EP - 257
AB - The space $\mathcal {HK}$ of Henstock-Kurzweil integrable functions on $[a,b]$ is the uncountable union of Fréchet spaces $\mathcal {HK}(X)$. In this paper, on each Fréchet space $\mathcal {HK}(X)$, an $F$-norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the $\mathcal {HK}(X)$ space. It is known that every control-convergent sequence in the $\mathcal {HK}$ space always belongs to a $\mathcal {HK}(X)$ space for some $X$. We illustrate how to apply results for Fréchet spaces $\mathcal {HK}(X)$ to control-convergent sequences in the $\mathcal {HK}$ space. Examples of compact linear operators are given. Existence of solutions to linear and Hammerstein integral equations is proved.
LA - eng
KW - compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral
UR - http://eudml.org/doc/297803
ER -
References
top- Alewine, J. A., Schechter, E., 10.14321/realanalexch.31.1.0023, Real Anal. Exch. 31 (2005/06), 23-44. (2005) Zbl1129.26003MR2218186DOI10.14321/realanalexch.31.1.0023
- Apostol, T. M., Mathematical Analysis: A Modern Approach to Advanced Calculus, Addison-Wesley Mathematics Series. Addison Wesley, Reading (1957). (1957) Zbl0077.05501MR0087718
- Bongiorno, B., Panchapagesan, T. V., 10.2307/44152670, Real Anal. Exch. 21 (1995/96), 604-614. (1995) Zbl0879.26028MR1407272DOI10.2307/44152670
- Chew, T. S., 10.1007/BFb0083096, New Integrals Lecture Notes in Mathematics 1419. Springer, Berlin (1990), 19-24. (1990) Zbl0731.26006MR1051917DOI10.1007/BFb0083096
- Chew, T. S., Lee, P. Y., 10.1017/S0004972700028689, Bull. Aust. Math. Soc. 42 (1990), 517-524. (1990) Zbl0715.26004MR1083288DOI10.1017/S0004972700028689
- Federson, M., Bianconi, R., 10.1515/JAA.2002.83, J. Appl. Anal. 8 (2002), 83-110. (2002) Zbl1043.45010MR1921473DOI10.1515/JAA.2002.83
- Hönig, C. S., 10.1016/s0304-0208(08)x7017-3, North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). (1975) Zbl0307.45002MR0499969DOI10.1016/s0304-0208(08)x7017-3
- Hönig, C. S., There is no natural Banach space norm on the space of Kurzweil-Henstock- Denjoy-Perron integrable functions, Seminário Brasileiro de Análise 30 (1989), 387-397. (1989) MR1763305
- Köthe, G., 10.1007/978-3-642-64988-2, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 159. Springer, Berlin (1969). (1969) Zbl0179.17001MR0248498DOI10.1007/978-3-642-64988-2
- Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E., Integral Operators in Spaces of Summable Functions, Monographs and Textbooks on Mechanics of Solids and Fluids. Noordhoff International Publishing, Leyden (1976). (1976) Zbl0312.47041MR0385645
- Kurzweil, J., 10.1142/4333, Series in Real Analysis 7. World Scientific, Singapore (2000). (2000) Zbl0954.28001MR1763305DOI10.1142/4333
- Lee, P. Y., 10.1142/0845, Series in Real Analysis 2. World Scientific, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
- Lee, P. Y., Topology of the Denjoy space, Southeast Asian Bull. Math. 38 (2014), 655-659. (2014) Zbl1324.26009MR3288602
- Méndez, L. Á. G., Reyna, J. A. E., Cárdenas, M. G. R., García, J. F. E., 10.1155/2013/476287, Abstr. Appl. Anal. 2013 (2013), Article ID 476287, 4 pages. (2013) Zbl1267.54018MR3034983DOI10.1155/2013/476287
- Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
- Morris, S. A., Noussair, E. S., The Schauder-Tychonoff fixed point theorem and applications, Mat. Čas., Slovensk. Akad. Vied 25 (1975), 165-172. (1975) Zbl0304.47049MR0397486
- Paúl, P. J., 10.36045/bbms/1102714029, Bull. Belg. Math. Soc. - Simon Stevin 8 (2001), 75-82. (2001) Zbl0997.46001MR1817532DOI10.36045/bbms/1102714029
- Royden, H. L., Real Analysis, Macmillan, New York (1989). (1989) Zbl0704.26006MR1013117
- Sari, D. K., Lee, P. Y., Zhao, D., A new topology on the space of primitives of Henstock-Kurzweil integrable functions, Southeast Asian Bull. Math. 42 (2018), 719-728. (2018) Zbl1428.26016MR3888440
- Schaefer, H. H., 10.1007/978-1-4684-9928-5, Graduate Texts in Mathematics 3. Springer, New York (1971). (1971) Zbl0217.16002MR0342978DOI10.1007/978-1-4684-9928-5
- Schwabik, Š., 10.21136/CPM.1972.108677, Čas. Pěst. Mat. 97 (1972), 297-330. (1972) Zbl0255.47057MR0450906DOI10.21136/CPM.1972.108677
- Thomson, B. S., 10.2307/44154028, Real Anal. Exch. 25 (1999/2000), 711-726. (1999) Zbl1016.26010MR1778525DOI10.2307/44154028
- Tvrdý, M., 10.21136/MB.1998.126306, Math. Bohem. 123 (1998), 177-212. (1998) Zbl0941.45001MR1673977DOI10.21136/MB.1998.126306
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.