α -filters and α -order-ideals in distributive quasicomplemented semilattices

Ismael Calomino; Sergio A. Celani

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Issue: 1, page 15-32
  • ISSN: 0010-2628

Abstract

top
We introduce some particular classes of filters and order-ideals in distributive semilattices, called α -filters and α -order-ideals, respectively. In particular, we study α -filters and α -order-ideals in distributive quasicomplemented semilattices. We also characterize the filters-congruence-cokernels in distributive quasicomplemented semilattices through α -order-ideals.

How to cite

top

Calomino, Ismael, and Celani, Sergio A.. "$\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices." Commentationes Mathematicae Universitatis Carolinae (2021): 15-32. <http://eudml.org/doc/297806>.

@article{Calomino2021,
abstract = {We introduce some particular classes of filters and order-ideals in distributive semilattices, called $\alpha $-filters and $\alpha $-order-ideals, respectively. In particular, we study $\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices. We also characterize the filters-congruence-cokernels in distributive quasicomplemented semilattices through $\alpha $-order-ideals.},
author = {Calomino, Ismael, Celani, Sergio A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bounded distributive semilattice; quasicomplement; relative annihilator; order-ideal; filter},
language = {eng},
number = {1},
pages = {15-32},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices},
url = {http://eudml.org/doc/297806},
year = {2021},
}

TY - JOUR
AU - Calomino, Ismael
AU - Celani, Sergio A.
TI - $\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 15
EP - 32
AB - We introduce some particular classes of filters and order-ideals in distributive semilattices, called $\alpha $-filters and $\alpha $-order-ideals, respectively. In particular, we study $\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices. We also characterize the filters-congruence-cokernels in distributive quasicomplemented semilattices through $\alpha $-order-ideals.
LA - eng
KW - bounded distributive semilattice; quasicomplement; relative annihilator; order-ideal; filter
UR - http://eudml.org/doc/297806
ER -

References

top
  1. Balbes R., Dwinger P., Distributive Lattices, University of Missouri Press, Columbia, 1974. Zbl0321.06012MR0373985
  2. Celani S. A., Topological representation of distributive semilattices, Sci. Math. Jpn. 58 (2003), no. 1, 55–65. Zbl1041.06002MR1987817
  3. Celani S. A., 10.1142/S1793557110000039, Asian-Eur. J. Math. 3 (2010), no. 1, 21–30. MR2654807DOI10.1142/S1793557110000039
  4. Celani S. A., 10.2478/s12175-012-0016-y, Math. Slovaca 62 (2012), no. 3, 389–398. MR2915604DOI10.2478/s12175-012-0016-y
  5. Celani S. A., Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices, Open Math. 13 (2015), no. 1, 165–177. MR3314172
  6. Celani S., Calomino I., Some remarks on distributive semilattices, Comment. Math. Univ. Carolin. 54 (2013), no. 3, 407–428. MR3090419
  7. Chajda I., Halaš R., Kühr J., Semilattice Structures, Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007. MR2326262
  8. Cornish W. H., 10.1017/S1446788700010041, J. Austral. Math. Soc. 14 (1972), 200–215. MR0313148DOI10.1017/S1446788700010041
  9. Cornish W. H., 10.1017/S1446788700012775, J. Austral. Math. Soc. 15 (1973), 70–77. MR0344170DOI10.1017/S1446788700012775
  10. Cornish W., Quasicomplemented lattices, Comment. Math. Univ. Carolinae 15 (1974), 501–511. MR0354468
  11. Grätzer G., General Lattice Theory, Birkhäuser Verlag, Basel, 1998. MR1670580
  12. Jayaram C., 10.1007/BF01895211, Acta Math. Acad. Sci. Hungar. 39 (1982), no. 1–3, 39–47. MR0653670DOI10.1007/BF01895211
  13. Mandelker M., 10.1215/S0012-7094-70-03748-8, Duke Math. J. 37 (1970), 377–386. Zbl0206.29701MR0256951DOI10.1215/S0012-7094-70-03748-8
  14. Mokbel K. A., 10.21136/MB.2015.144398, Math. Bohem. 140 (2015), no. 3, 319–328. MR3397260DOI10.21136/MB.2015.144398
  15. Murty P. V. R., Murty M. K., 10.1155/S0161171282000039, Internat. J. Math. Math. Sci. 5 (1982), no. 1, 21–30. MR0666490DOI10.1155/S0161171282000039
  16. Pawar Y., Mane D., α -ideals in 0 -distributive semilattices and 0 -distributive lattices, Indian J. Pure Appl. Math. 24 (1993), 435–443. MR1234802
  17. Pawar Y. S., Khopade S. S., α -ideals and annihilator ideals in 0 -distributive lattices, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 63–74. MR2797524
  18. Ramana Murty P. V., Ramam V., 10.1007/BF02483894, Algebra Universalis 12 (1981), no. 3, 343–351. MR0624300DOI10.1007/BF02483894
  19. Speed T. P., 10.1017/S1446788700007205, J. Austral. Math. Soc. 9 (1969), 289–296. MR0246800DOI10.1017/S1446788700007205
  20. Varlet J. C., A generalization of the notion of pseudo-complementedness, Bull. Soc. Roy. Sci. Liège 37 (1968), 149–158. Zbl0162.03501MR0228390
  21. Varlet J. C., 10.1017/S0004972700043094, Bull. Austral. Math. Soc. 9 (1973), 169–185. Zbl0258.06009MR0382091DOI10.1017/S0004972700043094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.