-filters and -order-ideals in distributive quasicomplemented semilattices
Ismael Calomino; Sergio A. Celani
Commentationes Mathematicae Universitatis Carolinae (2021)
- Issue: 1, page 15-32
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCalomino, Ismael, and Celani, Sergio A.. "$\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices." Commentationes Mathematicae Universitatis Carolinae (2021): 15-32. <http://eudml.org/doc/297806>.
@article{Calomino2021,
abstract = {We introduce some particular classes of filters and order-ideals in distributive semilattices, called $\alpha $-filters and $\alpha $-order-ideals, respectively. In particular, we study $\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices. We also characterize the filters-congruence-cokernels in distributive quasicomplemented semilattices through $\alpha $-order-ideals.},
author = {Calomino, Ismael, Celani, Sergio A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bounded distributive semilattice; quasicomplement; relative annihilator; order-ideal; filter},
language = {eng},
number = {1},
pages = {15-32},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices},
url = {http://eudml.org/doc/297806},
year = {2021},
}
TY - JOUR
AU - Calomino, Ismael
AU - Celani, Sergio A.
TI - $\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 15
EP - 32
AB - We introduce some particular classes of filters and order-ideals in distributive semilattices, called $\alpha $-filters and $\alpha $-order-ideals, respectively. In particular, we study $\alpha $-filters and $\alpha $-order-ideals in distributive quasicomplemented semilattices. We also characterize the filters-congruence-cokernels in distributive quasicomplemented semilattices through $\alpha $-order-ideals.
LA - eng
KW - bounded distributive semilattice; quasicomplement; relative annihilator; order-ideal; filter
UR - http://eudml.org/doc/297806
ER -
References
top- Balbes R., Dwinger P., Distributive Lattices, University of Missouri Press, Columbia, 1974. Zbl0321.06012MR0373985
- Celani S. A., Topological representation of distributive semilattices, Sci. Math. Jpn. 58 (2003), no. 1, 55–65. Zbl1041.06002MR1987817
- Celani S. A., 10.1142/S1793557110000039, Asian-Eur. J. Math. 3 (2010), no. 1, 21–30. MR2654807DOI10.1142/S1793557110000039
- Celani S. A., 10.2478/s12175-012-0016-y, Math. Slovaca 62 (2012), no. 3, 389–398. MR2915604DOI10.2478/s12175-012-0016-y
- Celani S. A., Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices, Open Math. 13 (2015), no. 1, 165–177. MR3314172
- Celani S., Calomino I., Some remarks on distributive semilattices, Comment. Math. Univ. Carolin. 54 (2013), no. 3, 407–428. MR3090419
- Chajda I., Halaš R., Kühr J., Semilattice Structures, Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007. MR2326262
- Cornish W. H., 10.1017/S1446788700010041, J. Austral. Math. Soc. 14 (1972), 200–215. MR0313148DOI10.1017/S1446788700010041
- Cornish W. H., 10.1017/S1446788700012775, J. Austral. Math. Soc. 15 (1973), 70–77. MR0344170DOI10.1017/S1446788700012775
- Cornish W., Quasicomplemented lattices, Comment. Math. Univ. Carolinae 15 (1974), 501–511. MR0354468
- Grätzer G., General Lattice Theory, Birkhäuser Verlag, Basel, 1998. MR1670580
- Jayaram C., 10.1007/BF01895211, Acta Math. Acad. Sci. Hungar. 39 (1982), no. 1–3, 39–47. MR0653670DOI10.1007/BF01895211
- Mandelker M., 10.1215/S0012-7094-70-03748-8, Duke Math. J. 37 (1970), 377–386. Zbl0206.29701MR0256951DOI10.1215/S0012-7094-70-03748-8
- Mokbel K. A., 10.21136/MB.2015.144398, Math. Bohem. 140 (2015), no. 3, 319–328. MR3397260DOI10.21136/MB.2015.144398
- Murty P. V. R., Murty M. K., 10.1155/S0161171282000039, Internat. J. Math. Math. Sci. 5 (1982), no. 1, 21–30. MR0666490DOI10.1155/S0161171282000039
- Pawar Y., Mane D., -ideals in -distributive semilattices and -distributive lattices, Indian J. Pure Appl. Math. 24 (1993), 435–443. MR1234802
- Pawar Y. S., Khopade S. S., -ideals and annihilator ideals in -distributive lattices, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 63–74. MR2797524
- Ramana Murty P. V., Ramam V., 10.1007/BF02483894, Algebra Universalis 12 (1981), no. 3, 343–351. MR0624300DOI10.1007/BF02483894
- Speed T. P., 10.1017/S1446788700007205, J. Austral. Math. Soc. 9 (1969), 289–296. MR0246800DOI10.1017/S1446788700007205
- Varlet J. C., A generalization of the notion of pseudo-complementedness, Bull. Soc. Roy. Sci. Liège 37 (1968), 149–158. Zbl0162.03501MR0228390
- Varlet J. C., 10.1017/S0004972700043094, Bull. Austral. Math. Soc. 9 (1973), 169–185. Zbl0258.06009MR0382091DOI10.1017/S0004972700043094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.