A variety of Euler's sum of powers conjecture
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1099-1113
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCai, Tianxin, and Zhang, Yong. "A variety of Euler's sum of powers conjecture." Czechoslovak Mathematical Journal 71.4 (2021): 1099-1113. <http://eudml.org/doc/297828>.
@article{Cai2021,
abstract = {We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system \[ \{\left\lbrace \begin\{array\}\{ll\} n=a\_\{1\}+a\_\{2\}+\cdots +a\_\{s-1\},\\ a\_\{1\}a\_\{2\}\cdots a\_\{s-1\}(a\_\{1\}+a\_\{2\}+\cdots +a\_\{s-1\})=b^\{s\} \end\{array\}\right.\} \]
has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\ge 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\ge 4$. As a corollary, for $s\ge 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\ge 4$ and a fixed positive integer $n$.},
author = {Cai, Tianxin, Zhang, Yong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution},
language = {eng},
number = {4},
pages = {1099-1113},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A variety of Euler's sum of powers conjecture},
url = {http://eudml.org/doc/297828},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Cai, Tianxin
AU - Zhang, Yong
TI - A variety of Euler's sum of powers conjecture
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1099
EP - 1113
AB - We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system \[ {\left\lbrace \begin{array}{ll} n=a_{1}+a_{2}+\cdots +a_{s-1},\\ a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots +a_{s-1})=b^{s} \end{array}\right.} \]
has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\ge 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\ge 4$. As a corollary, for $s\ge 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\ge 4$ and a fixed positive integer $n$.
LA - eng
KW - Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution
UR - http://eudml.org/doc/297828
ER -
References
top- Cai, T., Chen, D., 10.1090/s0025-5718-2013-02685-3, Math. Comput. 82 (2013), 2333-2341. (2013) Zbl1284.11127MR3073204DOI10.1090/s0025-5718-2013-02685-3
- Cai, T., Chen, D., Zhang, Y., 10.1016/j.jnt.2014.09.014, J. Number Theory 149 (2015), 33-45. (2015) Zbl1369.11026MR3295999DOI10.1016/j.jnt.2014.09.014
- Cohen, H., 10.1007/978-0-387-49923-9, Graduate Texts in Mathematics 239. Springer, New York (2007). (2007) Zbl1119.11001MR2312337DOI10.1007/978-0-387-49923-9
- Elkies, N. D., 10.1090/S0025-5718-1988-0930224-9, Math. Comput. 184 (1988), 825-835. (1988) Zbl0698.10010MR930224DOI10.1090/S0025-5718-1988-0930224-9
- Guy, R. K., 10.1007/978-1-4899-3585-4, Problem Books in Mathematics. Springer, New York (2004). (2004) Zbl1058.11001MR2076335DOI10.1007/978-1-4899-3585-4
- Lander, L. J., Parkin, T. R., 10.1090/S0002-9904-1966-11654-3, Bull. Am. Math. Soc. 72 (1966), 1079. (1966) Zbl0145.04903MR0197389DOI10.1090/S0002-9904-1966-11654-3
- Magma computational algebra system for algebra, number theory and geometry, Available at http://magma.maths.usyd.edu.au/magma/.
- Mordell, L. J., Diophantine Equations, Pure and Applied Mathematics 30. Academic Press, London (1969). (1969) Zbl0188.34503MR0249355
- Rowland, E. S., Elliptic curve and integral solutions to , (2004), 7 pages. (2004)
- Skolem, T., Diophantische Gleichungen, Ergebnisse der Mathematik und ihrer Grenzgebiete 5. Springer, Berlin (1938), German. (1938) Zbl0018.29302
- Ulas, M., 10.1090/S0025-5718-2013-02778-0, Math. Comput. 83 (2014), 1915-1930. (2014) Zbl1290.11064MR3194135DOI10.1090/S0025-5718-2013-02778-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.