A q -congruence for a truncated 4 ϕ 3 series

Victor J. W. Guo; Chuanan Wei

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 1157-1165
  • ISSN: 0011-4642

Abstract

top
Let Φ n ( q ) denote the n th cyclotomic polynomial in q . Recently, Guo, Schlosser and Zudilin proved that for any integer n > 1 with n 1 ( mod 4 ) , k = 0 n - 1 ( q - 1 ; q 2 ) k 2 ( q - 2 ; q 4 ) k ( q 2 ; q 2 ) k 2 ( q 4 ; q 4 ) k q 6 k 0 ( mod Φ n ( q ) 2 ) , where ( a ; q ) m = ( 1 - a ) ( 1 - a q ) ( 1 - a q m - 1 ) . In this note, we give a generalization of the above q -congruence to the modulus Φ n ( q ) 3 case. Meanwhile, we give a corresponding q -congruence modulo Φ n ( q ) 2 for n 3 ( mod 4 ) . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a 4 ϕ 3 summation formula.

How to cite

top

Guo, Victor J. W., and Wei, Chuanan. "A $q$-congruence for a truncated $_{4}\varphi _{3}$ series." Czechoslovak Mathematical Journal 71.4 (2021): 1157-1165. <http://eudml.org/doc/297848>.

@article{Guo2021,
abstract = {Let $\Phi _n(q)$ denote the $n$th cyclotomic polynomial in $q$. Recently, Guo, Schlosser and Zudilin proved that for any integer $n>1$ with $n\equiv 1\hspace\{4.44443pt\}(\@mod \; 4)$, \[ \sum \_\{k=0\}^\{n-1\}\frac\{(q^\{-1\};q^2)\_k^2(q^\{-2\};q^4)\_k\}\{(q^2;q^2)\_k^2 (q^4;q^4)\_k\}q^\{6k\} \equiv 0\hspace\{10.0pt\}(\@mod \; \Phi \_n(q)^2), \] where $(a;q)_m=(1-a)(1-aq)\cdots (1-aq^\{m-1\})$. In this note, we give a generalization of the above $q$-congruence to the modulus $\Phi _n(q)^3$ case. Meanwhile, we give a corresponding $q$-congruence modulo $\Phi _n(q)^2$ for $n\equiv 3\hspace\{4.44443pt\}(\@mod \; 4)$. Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a $_4\varphi _3$ summation formula.},
author = {Guo, Victor J. W., Wei, Chuanan},
journal = {Czechoslovak Mathematical Journal},
keywords = {basic hypergeometric series; Watson’s transformation; $q$-congruence; supercongruence; creative microscoping},
language = {eng},
number = {4},
pages = {1157-1165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A $q$-congruence for a truncated $_\{4\}\varphi _\{3\}$ series},
url = {http://eudml.org/doc/297848},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Guo, Victor J. W.
AU - Wei, Chuanan
TI - A $q$-congruence for a truncated $_{4}\varphi _{3}$ series
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1157
EP - 1165
AB - Let $\Phi _n(q)$ denote the $n$th cyclotomic polynomial in $q$. Recently, Guo, Schlosser and Zudilin proved that for any integer $n>1$ with $n\equiv 1\hspace{4.44443pt}(\@mod \; 4)$, \[ \sum _{k=0}^{n-1}\frac{(q^{-1};q^2)_k^2(q^{-2};q^4)_k}{(q^2;q^2)_k^2 (q^4;q^4)_k}q^{6k} \equiv 0\hspace{10.0pt}(\@mod \; \Phi _n(q)^2), \] where $(a;q)_m=(1-a)(1-aq)\cdots (1-aq^{m-1})$. In this note, we give a generalization of the above $q$-congruence to the modulus $\Phi _n(q)^3$ case. Meanwhile, we give a corresponding $q$-congruence modulo $\Phi _n(q)^2$ for $n\equiv 3\hspace{4.44443pt}(\@mod \; 4)$. Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a $_4\varphi _3$ summation formula.
LA - eng
KW - basic hypergeometric series; Watson’s transformation; $q$-congruence; supercongruence; creative microscoping
UR - http://eudml.org/doc/297848
ER -

References

top
  1. Gasper, G., Rahman, M., 10.1017/CBO9780511526251, Encyclopedia of Mathematics and Its Applications 96. Cambridge University Press, Cambridge (2004). (2004) Zbl1129.33005MR2128719DOI10.1017/CBO9780511526251
  2. Guo, V. J. W., Schlosser, M. J., 10.1080/10236198.2019.1622690, J. Difference Equ. Appl. 25 (2019), 921-929. (2019) Zbl1426.33048MR3996958DOI10.1080/10236198.2019.1622690
  3. Guo, V. J. W., Schlosser, M. J., 10.1007/s00365-020-09524-z, Constr. Approx. 53 (2021), 155-200. (2021) Zbl07326825MR4205256DOI10.1007/s00365-020-09524-z
  4. Guo, V. J. W., Schlosser, M. J., Zudili, W., New quadratic identities for basic hypergeometric series and q-congruences. Preprint. Available at http://math.ecnu.edu.cn/ jwguo/maths/quad.pdf, . 
  5. Guo, V. J. W., Zudilin, W., 10.1016/j.aim.2019.02.008, Adv. Math. 346 (2019), 329-358. (2019) Zbl07035902MR3910798DOI10.1016/j.aim.2019.02.008
  6. Guo, V. J. W., Zudilin, W., 10.1016/j.jmaa.2019.03.035, J. Math. Anal. Appl. 475 (2019), 1636-1646. (2019) Zbl1445.11014MR3944391DOI10.1016/j.jmaa.2019.03.035
  7. Guo, V. J. W., Zudilin, W., 10.1007/s00025-020-1168-7, Result. Math. 75 (2020), Article ID 46, 11 pages. (2020) Zbl1439.33007MR4075300DOI10.1007/s00025-020-1168-7
  8. Guo, V. J. W., Zudilin, W., 10.1016/j.jcta.2020.105362, J. Comb. Theory, Ser. A 178 (2021), Article ID 105362, 37 pages. (2021) Zbl07304668MR4183862DOI10.1016/j.jcta.2020.105362
  9. Li, L., Wang, S.-D., 10.1007/s13398-020-00923-2, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 190, 7 pages. (2020) Zbl07258316MR4138479DOI10.1007/s13398-020-00923-2
  10. Liu, J-C., 10.1016/j.jmaa.2018.10.095, J. Math. Anal. Appl. 471 (2019), 613-622. (2019) Zbl1423.11015MR3906342DOI10.1016/j.jmaa.2018.10.095
  11. Liu, J.-C., Petrov, F., 10.1016/j.aam.2020.102003, Adv. Appl. Math. 116 (2020), Article ID 102003, 11 pages. (2020) Zbl07175431MR4056114DOI10.1016/j.aam.2020.102003
  12. Long, L., Ramakrishna, R., 10.1016/j.aim.2015.11.043, Adv. Math. 290 (2016), 773-808. (2016) Zbl1336.33018MR3451938DOI10.1016/j.aim.2015.11.043
  13. Mao, G.-S., Pan, H., 10.4064/aa190511-2-1, Acta Arith. 195 (2020), 199-206. (2020) Zbl07221836MR4109895DOI10.4064/aa190511-2-1
  14. Ni, H.-X., Pan, H., 10.1142/S1793042118501038, Int. J. Number Theory 14 (2018), 1699-1707. (2018) Zbl1428.11041MR3827955DOI10.1142/S1793042118501038
  15. Sun, Z.-W., 10.1016/j.jnt.2012.05.014, J. Number Theory 132 (2012), 2673-2690. (2012) Zbl1275.11038MR2954998DOI10.1016/j.jnt.2012.05.014
  16. Swisher, H., 10.1186/s40687-015-0037-6, Res. Math. Sci. 2 (2015), Article ID 18, 21 pages. (2015) Zbl1337.33005MR3411813DOI10.1186/s40687-015-0037-6
  17. Tauraso, R., 10.1016/j.aam.2011.12.002, Adv. Appl. Math. 48 (2012), 603-614. (2012) Zbl1270.11016MR2920834DOI10.1016/j.aam.2011.12.002
  18. Hamme, L. Van, Some conjectures concerning partial sums of generalized hypergeometric series, -Adic Functional Analysis Lecture Notes in Pure and Applied Mathematics 192. Marcel Dekker, New York (1997), 223-236. (1997) Zbl0895.11051MR1459212
  19. Wang, X., Yue, M., 10.1142/S1793042120500694, Int. J. Number Theory 16 (2020), 1325-1335. (2020) Zbl07219273MR4120479DOI10.1142/S1793042120500694
  20. Wang, X., Yue, M., 10.1007/s00025-020-01195-3, Result. Math. 75 (2020), Article ID 71, 15 pages. (2020) Zbl1437.33015MR4091607DOI10.1007/s00025-020-01195-3
  21. Zudilin, W., 10.1007/s00026-019-00461-8, Ann. Comb. 23 (2019), 1123-1135. (2019) Zbl1431.11032MR4039579DOI10.1007/s00026-019-00461-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.