A -congruence for a truncated series
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1157-1165
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Victor J. W., and Wei, Chuanan. "A $q$-congruence for a truncated $_{4}\varphi _{3}$ series." Czechoslovak Mathematical Journal 71.4 (2021): 1157-1165. <http://eudml.org/doc/297848>.
@article{Guo2021,
abstract = {Let $\Phi _n(q)$ denote the $n$th cyclotomic polynomial in $q$. Recently, Guo, Schlosser and Zudilin proved that for any integer $n>1$ with $n\equiv 1\hspace\{4.44443pt\}(\@mod \; 4)$, \[ \sum \_\{k=0\}^\{n-1\}\frac\{(q^\{-1\};q^2)\_k^2(q^\{-2\};q^4)\_k\}\{(q^2;q^2)\_k^2 (q^4;q^4)\_k\}q^\{6k\} \equiv 0\hspace\{10.0pt\}(\@mod \; \Phi \_n(q)^2), \]
where $(a;q)_m=(1-a)(1-aq)\cdots (1-aq^\{m-1\})$. In this note, we give a generalization of the above $q$-congruence to the modulus $\Phi _n(q)^3$ case. Meanwhile, we give a corresponding $q$-congruence modulo $\Phi _n(q)^2$ for $n\equiv 3\hspace\{4.44443pt\}(\@mod \; 4)$. Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a $_4\varphi _3$ summation formula.},
author = {Guo, Victor J. W., Wei, Chuanan},
journal = {Czechoslovak Mathematical Journal},
keywords = {basic hypergeometric series; Watson’s transformation; $q$-congruence; supercongruence; creative microscoping},
language = {eng},
number = {4},
pages = {1157-1165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A $q$-congruence for a truncated $_\{4\}\varphi _\{3\}$ series},
url = {http://eudml.org/doc/297848},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Guo, Victor J. W.
AU - Wei, Chuanan
TI - A $q$-congruence for a truncated $_{4}\varphi _{3}$ series
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1157
EP - 1165
AB - Let $\Phi _n(q)$ denote the $n$th cyclotomic polynomial in $q$. Recently, Guo, Schlosser and Zudilin proved that for any integer $n>1$ with $n\equiv 1\hspace{4.44443pt}(\@mod \; 4)$, \[ \sum _{k=0}^{n-1}\frac{(q^{-1};q^2)_k^2(q^{-2};q^4)_k}{(q^2;q^2)_k^2 (q^4;q^4)_k}q^{6k} \equiv 0\hspace{10.0pt}(\@mod \; \Phi _n(q)^2), \]
where $(a;q)_m=(1-a)(1-aq)\cdots (1-aq^{m-1})$. In this note, we give a generalization of the above $q$-congruence to the modulus $\Phi _n(q)^3$ case. Meanwhile, we give a corresponding $q$-congruence modulo $\Phi _n(q)^2$ for $n\equiv 3\hspace{4.44443pt}(\@mod \; 4)$. Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a $_4\varphi _3$ summation formula.
LA - eng
KW - basic hypergeometric series; Watson’s transformation; $q$-congruence; supercongruence; creative microscoping
UR - http://eudml.org/doc/297848
ER -
References
top- Gasper, G., Rahman, M., 10.1017/CBO9780511526251, Encyclopedia of Mathematics and Its Applications 96. Cambridge University Press, Cambridge (2004). (2004) Zbl1129.33005MR2128719DOI10.1017/CBO9780511526251
- Guo, V. J. W., Schlosser, M. J., 10.1080/10236198.2019.1622690, J. Difference Equ. Appl. 25 (2019), 921-929. (2019) Zbl1426.33048MR3996958DOI10.1080/10236198.2019.1622690
- Guo, V. J. W., Schlosser, M. J., 10.1007/s00365-020-09524-z, Constr. Approx. 53 (2021), 155-200. (2021) Zbl07326825MR4205256DOI10.1007/s00365-020-09524-z
- Guo, V. J. W., Schlosser, M. J., Zudili, W., New quadratic identities for basic hypergeometric series and q-congruences. Preprint. Available at http://math.ecnu.edu.cn/ jwguo/maths/quad.pdf, .
- Guo, V. J. W., Zudilin, W., 10.1016/j.aim.2019.02.008, Adv. Math. 346 (2019), 329-358. (2019) Zbl07035902MR3910798DOI10.1016/j.aim.2019.02.008
- Guo, V. J. W., Zudilin, W., 10.1016/j.jmaa.2019.03.035, J. Math. Anal. Appl. 475 (2019), 1636-1646. (2019) Zbl1445.11014MR3944391DOI10.1016/j.jmaa.2019.03.035
- Guo, V. J. W., Zudilin, W., 10.1007/s00025-020-1168-7, Result. Math. 75 (2020), Article ID 46, 11 pages. (2020) Zbl1439.33007MR4075300DOI10.1007/s00025-020-1168-7
- Guo, V. J. W., Zudilin, W., 10.1016/j.jcta.2020.105362, J. Comb. Theory, Ser. A 178 (2021), Article ID 105362, 37 pages. (2021) Zbl07304668MR4183862DOI10.1016/j.jcta.2020.105362
- Li, L., Wang, S.-D., 10.1007/s13398-020-00923-2, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 190, 7 pages. (2020) Zbl07258316MR4138479DOI10.1007/s13398-020-00923-2
- Liu, J-C., 10.1016/j.jmaa.2018.10.095, J. Math. Anal. Appl. 471 (2019), 613-622. (2019) Zbl1423.11015MR3906342DOI10.1016/j.jmaa.2018.10.095
- Liu, J.-C., Petrov, F., 10.1016/j.aam.2020.102003, Adv. Appl. Math. 116 (2020), Article ID 102003, 11 pages. (2020) Zbl07175431MR4056114DOI10.1016/j.aam.2020.102003
- Long, L., Ramakrishna, R., 10.1016/j.aim.2015.11.043, Adv. Math. 290 (2016), 773-808. (2016) Zbl1336.33018MR3451938DOI10.1016/j.aim.2015.11.043
- Mao, G.-S., Pan, H., 10.4064/aa190511-2-1, Acta Arith. 195 (2020), 199-206. (2020) Zbl07221836MR4109895DOI10.4064/aa190511-2-1
- Ni, H.-X., Pan, H., 10.1142/S1793042118501038, Int. J. Number Theory 14 (2018), 1699-1707. (2018) Zbl1428.11041MR3827955DOI10.1142/S1793042118501038
- Sun, Z.-W., 10.1016/j.jnt.2012.05.014, J. Number Theory 132 (2012), 2673-2690. (2012) Zbl1275.11038MR2954998DOI10.1016/j.jnt.2012.05.014
- Swisher, H., 10.1186/s40687-015-0037-6, Res. Math. Sci. 2 (2015), Article ID 18, 21 pages. (2015) Zbl1337.33005MR3411813DOI10.1186/s40687-015-0037-6
- Tauraso, R., 10.1016/j.aam.2011.12.002, Adv. Appl. Math. 48 (2012), 603-614. (2012) Zbl1270.11016MR2920834DOI10.1016/j.aam.2011.12.002
- Hamme, L. Van, Some conjectures concerning partial sums of generalized hypergeometric series, -Adic Functional Analysis Lecture Notes in Pure and Applied Mathematics 192. Marcel Dekker, New York (1997), 223-236. (1997) Zbl0895.11051MR1459212
- Wang, X., Yue, M., 10.1142/S1793042120500694, Int. J. Number Theory 16 (2020), 1325-1335. (2020) Zbl07219273MR4120479DOI10.1142/S1793042120500694
- Wang, X., Yue, M., 10.1007/s00025-020-01195-3, Result. Math. 75 (2020), Article ID 71, 15 pages. (2020) Zbl1437.33015MR4091607DOI10.1007/s00025-020-01195-3
- Zudilin, W., 10.1007/s00026-019-00461-8, Ann. Comb. 23 (2019), 1123-1135. (2019) Zbl1431.11032MR4039579DOI10.1007/s00026-019-00461-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.