Constructing modular forms from harmonic Maass Jacobi forms
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 455-473
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXiong, Ran, and Zhou, Haigang. "Constructing modular forms from harmonic Maass Jacobi forms." Czechoslovak Mathematical Journal 71.2 (2021): 455-473. <http://eudml.org/doc/297855>.
@article{Xiong2021,
abstract = {We construct a family of modular forms from harmonic Maass Jacobi forms by considering their Taylor expansion and using the method of holomorphic projection. As an application we present a certain type Hurwitz class relations which can be viewed as a generalization of Mertens' result in M. H. Mertens (2016).},
author = {Xiong, Ran, Zhou, Haigang},
journal = {Czechoslovak Mathematical Journal},
keywords = {modular form; harmonic Maass Jacobi form; holomorphic projection; Hurwitz class number},
language = {eng},
number = {2},
pages = {455-473},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Constructing modular forms from harmonic Maass Jacobi forms},
url = {http://eudml.org/doc/297855},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Xiong, Ran
AU - Zhou, Haigang
TI - Constructing modular forms from harmonic Maass Jacobi forms
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 455
EP - 473
AB - We construct a family of modular forms from harmonic Maass Jacobi forms by considering their Taylor expansion and using the method of holomorphic projection. As an application we present a certain type Hurwitz class relations which can be viewed as a generalization of Mertens' result in M. H. Mertens (2016).
LA - eng
KW - modular form; harmonic Maass Jacobi form; holomorphic projection; Hurwitz class number
UR - http://eudml.org/doc/297855
ER -
References
top- Bringmann, K., Folsom, A., Ono, K., Rolen, L., 10.1090/coll/064, American Mathematical Society Colloquium Publications 64. American Mathematical Society, Providence (2017). (2017) Zbl06828732MR3729259DOI10.1090/coll/064
- Bringmann, K., Richter, O. K., 10.1016/j.aim.2010.03.033, Adv. Math. 225 (2010), 2298-2315. (2010) Zbl1264.11039MR2680205DOI10.1016/j.aim.2010.03.033
- Choie, Y., 10.1007/BF02677465, Manuscr. Math. 93 (1997), 177-187. (1997) Zbl0890.11017MR1464364DOI10.1007/BF02677465
- Cohen, H., 10.1007/BF01436180, Math. Ann. 217 (1975), 271-285. (1975) Zbl0311.10030MR0382192DOI10.1007/BF01436180
- Eichler, M., Zagier, D., 10.1007/978-1-4684-9162-3, Progress in Mathematics 55. Birkhäuser, Boston (1985). (1985) Zbl0554.10018MR0781735DOI10.1007/978-1-4684-9162-3
- Gross, B. H., Zagier, D., 10.1007/BF01388809, Invent. Math. 84 (1986), 225-320. (1986) Zbl0608.14019MR0833192DOI10.1007/BF01388809
- Imamoğlu, Ö., Raum, M., Richter, O. K., 10.1073/pnas.1311621111, Proc. Natl. Acad. Sci. USA 111 (2014), 3961-3967. (2014) Zbl1355.11039MR3200180DOI10.1073/pnas.1311621111
- Mertens, M. H., Mock Modular Forms and Class Numbers of Quadratic Forms: PhD Thesis, Universität zu Köln, Köln (2014), Available at http://kups.ub.uni-koeln.de/id/eprint/5686. (2014) MR3377995
- Mertens, M. H., 10.1016/j.aim.2016.06.016, Adv. Math. 301 (2016), 359-382. (2016) Zbl1404.11054MR3539378DOI10.1016/j.aim.2016.06.016
- Sturm, J., 10.1090/S0273-0979-1980-14757-6, Bull. Am. Math. Soc., New Ser. 2 (1980), 435-439. (1980) Zbl0433.10013MR561527DOI10.1090/S0273-0979-1980-14757-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.