Weakly compact sets in Orlicz sequence spaces
Siyu Shi; Zhong Rui Shi; Shujun Wu
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 961-974
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topShi, Siyu, Shi, Zhong Rui, and Wu, Shujun. "Weakly compact sets in Orlicz sequence spaces." Czechoslovak Mathematical Journal 71.4 (2021): 961-974. <http://eudml.org/doc/297856>.
@article{Shi2021,
abstract = {We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of $N$-functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of $\lim _\{u\rightarrow 0\} M(u)/u=0$, we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set $A$ in Riesz spaces $l_p$$(1 < p < \infty )$ is relatively sequential weakly compact if and only if it is normed bounded, that says $\sup _\{u\in A\}\sum _\{i=1\}^\{\infty \} |u(i)|^p < \infty $. The result again confirms the conclusion of the Banach-Alaoglu theorem.},
author = {Shi, Siyu, Shi, Zhong Rui, Wu, Shujun},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact set; weak topology; Banach space; dual space; Orlicz sequence spaces},
language = {eng},
number = {4},
pages = {961-974},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weakly compact sets in Orlicz sequence spaces},
url = {http://eudml.org/doc/297856},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Shi, Siyu
AU - Shi, Zhong Rui
AU - Wu, Shujun
TI - Weakly compact sets in Orlicz sequence spaces
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 961
EP - 974
AB - We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of $N$-functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of $\lim _{u\rightarrow 0} M(u)/u=0$, we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set $A$ in Riesz spaces $l_p$$(1 < p < \infty )$ is relatively sequential weakly compact if and only if it is normed bounded, that says $\sup _{u\in A}\sum _{i=1}^{\infty } |u(i)|^p < \infty $. The result again confirms the conclusion of the Banach-Alaoglu theorem.
LA - eng
KW - compact set; weak topology; Banach space; dual space; Orlicz sequence spaces
UR - http://eudml.org/doc/297856
ER -
References
top- Aleksandrov, P. S., Kolmogorov, A. N., Introduction to the Theory of Sets and the Theory of Functions. 1. Introduction to the General Theory of Sets and Functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1948), Russian. (1948) Zbl0037.03404MR0040369
- Andô, T., 10.4153/CJM-1962-012-7, Can. J. Math. 14 (1962), 170-176. (1962) Zbl0103.32902MR0157228DOI10.4153/CJM-1962-012-7
- Arzelà, C., Funzioni di linee, Rom. Acc. L. Rend. (4) 5 (1889), 342-348 Italian 9999JFM99999 21.0424.01. (1889)
- Batt, J., Schlüchtermann, G., 10.4064/sm-83-3-239-250, Stud. Math. 83 (1986), 239-250. (1986) Zbl0555.46014MR0850826DOI10.4064/sm-83-3-239-250
- Brouwer, L. E. J., 10.1007/BF01456846, Math. Ann. 71 (1911), 305-313 German 9999JFM99999 42.0418.01. (1911) MR1511658DOI10.1007/BF01456846
- Cheng, L., Cheng, Q., Shen, Q., Tu, K., Zhang, W., 10.4064/sm8448-2-2017, Stud. Math. 240 (2018), 21-45. (2018) Zbl06828572MR3719465DOI10.4064/sm8448-2-2017
- Cheng, L., Cheng, Q., Zhang, J., 10.1016/j.jmaa.2015.03.061, J. Math. Anal. Appl. 428 (2015), 1209-1224. (2015) Zbl1329.46015MR3334975DOI10.1016/j.jmaa.2015.03.061
- Darbo, G., Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. (1955) Zbl0064.35704MR0070164
- Dodds, P. G., Sukochev, F. A., Schlüchtermann, G., 10.1017/S0305004101005114, Math. Proc. Camb. Philos. Soc. 131 (2001), 363-384. (2001) Zbl1004.46038MR1857125DOI10.1017/S0305004101005114
- Fabian, M., Montesinos, V., Zizler, V., 10.1216/RMJ-2009-39-6-1885, Rocky Mt. J. Math. 39 (2009), 1885-1893. (2009) Zbl1190.46011MR2575884DOI10.1216/RMJ-2009-39-6-1885
- Foralewski, P., Hudzik, H., Kolwicz, P., 10.1016/j.jfa.2012.10.014, J. Funct. Anal. 264 (2013), 605-629. (2013) Zbl1263.46015MR2997393DOI10.1016/j.jfa.2012.10.014
- Gale, D., 10.2307/2320146, Am. Math. Mon. 86 (1979), 818-827. (1979) Zbl0448.90097MR0551501DOI10.2307/2320146
- James, R. C., 10.1090/S0002-9947-1964-0165344-2, Trans. Am. Math. Soc. 113 (1964), 129-140. (1964) Zbl0129.07901MR0165344DOI10.1090/S0002-9947-1964-0165344-2
- James, R. C., The Eberlein-Šmulian theorem, Functional Analysis. Selected Topics Narosa Publishing House, New Delhi (1998), 47-49. (1998) Zbl1010.46011MR1668790
- Kelley, J. L., General Topology, The University Series in Higher Mathematics. D. van Nostrand, New York (1955). (1955) Zbl0066.16604MR0070144
- Kolmogorov, A. N., Tikhomirov, V. M., -entropy and -capacity of sets in function spaces, Usp. Mat. Nauk 14 (1959), 3-86 Russian. (1959) Zbl0090.33503MR0112032
- Krasnosel'skij, M. A., Rutitskij, Y. B., Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen (1961). (1961) Zbl0095.09103MR0126722
- Leray, J., Schauder, J., 10.24033/asens.836, Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 French. (1934) Zbl0009.07301MR1509338DOI10.24033/asens.836
- Musielak, J., 10.1007/BFb0072210, Lecture Notes in Mathematics 1034. Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434DOI10.1007/BFb0072210
- Schlüchtermann, G., 10.1006/jfan.1994.1129, J. Funct. Anal. 125 (1994), 379-388. (1994) Zbl0828.46036MR1297673DOI10.1006/jfan.1994.1129
- Shi, S., Shi, Z., 10.4064/bc119-17, Function Spaces XII Banach Center Publications 119. Polish Academy of Sciences, Institute of Mathematics. Warsaw (2019), 295-309. (2019) Zbl1444.46024DOI10.4064/bc119-17
- Shi, Z., Wang, Y., 10.1216/RMJ-2018-48-2-639, Rocky Mt. J. Math. 48 (2018), 639-660. (2018) Zbl1402.46013MR3810210DOI10.1216/RMJ-2018-48-2-639
- Šmulian, V., On compact sets in the space of measurable functions, Mat. Sb., N. Ser. 15 (1944), 343-346 Russian. (1944) Zbl0060.27602MR0012210
- Wu, Y., Normed compact sets and weakly -compact in Orlicz space, J. Nature 3 (1982), 234 Chinese. (1982)
- Wu, C., Wang, T., Orlicz Spaces and Applications, Heilongjiang Sci. & Tech. Press, Harbin (1983), Chinese. (1983)
- Zhang, X., Shi, Z., A criterion of compact set in Orlicz sequence space , J. Changchun Post Telcommunication Institute 15 (1997), 64-67 Chinese. (1997)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.