Weakly compact sets in Orlicz sequence spaces

Siyu Shi; Zhong Rui Shi; Shujun Wu

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 961-974
  • ISSN: 0011-4642

Abstract

top
We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of N -functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of lim u 0 M ( u ) / u = 0 , we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set A in Riesz spaces l p ( 1 < p < ) is relatively sequential weakly compact if and only if it is normed bounded, that says sup u A i = 1 | u ( i ) | p < . The result again confirms the conclusion of the Banach-Alaoglu theorem.

How to cite

top

Shi, Siyu, Shi, Zhong Rui, and Wu, Shujun. "Weakly compact sets in Orlicz sequence spaces." Czechoslovak Mathematical Journal 71.4 (2021): 961-974. <http://eudml.org/doc/297856>.

@article{Shi2021,
abstract = {We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of $N$-functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of $\lim _\{u\rightarrow 0\} M(u)/u=0$, we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set $A$ in Riesz spaces $l_p$$(1 < p < \infty )$ is relatively sequential weakly compact if and only if it is normed bounded, that says $\sup _\{u\in A\}\sum _\{i=1\}^\{\infty \} |u(i)|^p < \infty $. The result again confirms the conclusion of the Banach-Alaoglu theorem.},
author = {Shi, Siyu, Shi, Zhong Rui, Wu, Shujun},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact set; weak topology; Banach space; dual space; Orlicz sequence spaces},
language = {eng},
number = {4},
pages = {961-974},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weakly compact sets in Orlicz sequence spaces},
url = {http://eudml.org/doc/297856},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Shi, Siyu
AU - Shi, Zhong Rui
AU - Wu, Shujun
TI - Weakly compact sets in Orlicz sequence spaces
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 961
EP - 974
AB - We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of $N$-functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of $\lim _{u\rightarrow 0} M(u)/u=0$, we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set $A$ in Riesz spaces $l_p$$(1 < p < \infty )$ is relatively sequential weakly compact if and only if it is normed bounded, that says $\sup _{u\in A}\sum _{i=1}^{\infty } |u(i)|^p < \infty $. The result again confirms the conclusion of the Banach-Alaoglu theorem.
LA - eng
KW - compact set; weak topology; Banach space; dual space; Orlicz sequence spaces
UR - http://eudml.org/doc/297856
ER -

References

top
  1. Aleksandrov, P. S., Kolmogorov, A. N., Introduction to the Theory of Sets and the Theory of Functions. 1. Introduction to the General Theory of Sets and Functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1948), Russian. (1948) Zbl0037.03404MR0040369
  2. Andô, T., 10.4153/CJM-1962-012-7, Can. J. Math. 14 (1962), 170-176. (1962) Zbl0103.32902MR0157228DOI10.4153/CJM-1962-012-7
  3. Arzelà, C., Funzioni di linee, Rom. Acc. L. Rend. (4) 5 (1889), 342-348 Italian 9999JFM99999 21.0424.01. (1889) 
  4. Batt, J., Schlüchtermann, G., 10.4064/sm-83-3-239-250, Stud. Math. 83 (1986), 239-250. (1986) Zbl0555.46014MR0850826DOI10.4064/sm-83-3-239-250
  5. Brouwer, L. E. J., 10.1007/BF01456846, Math. Ann. 71 (1911), 305-313 German 9999JFM99999 42.0418.01. (1911) MR1511658DOI10.1007/BF01456846
  6. Cheng, L., Cheng, Q., Shen, Q., Tu, K., Zhang, W., 10.4064/sm8448-2-2017, Stud. Math. 240 (2018), 21-45. (2018) Zbl06828572MR3719465DOI10.4064/sm8448-2-2017
  7. Cheng, L., Cheng, Q., Zhang, J., 10.1016/j.jmaa.2015.03.061, J. Math. Anal. Appl. 428 (2015), 1209-1224. (2015) Zbl1329.46015MR3334975DOI10.1016/j.jmaa.2015.03.061
  8. Darbo, G., Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. (1955) Zbl0064.35704MR0070164
  9. Dodds, P. G., Sukochev, F. A., Schlüchtermann, G., 10.1017/S0305004101005114, Math. Proc. Camb. Philos. Soc. 131 (2001), 363-384. (2001) Zbl1004.46038MR1857125DOI10.1017/S0305004101005114
  10. Fabian, M., Montesinos, V., Zizler, V., 10.1216/RMJ-2009-39-6-1885, Rocky Mt. J. Math. 39 (2009), 1885-1893. (2009) Zbl1190.46011MR2575884DOI10.1216/RMJ-2009-39-6-1885
  11. Foralewski, P., Hudzik, H., Kolwicz, P., 10.1016/j.jfa.2012.10.014, J. Funct. Anal. 264 (2013), 605-629. (2013) Zbl1263.46015MR2997393DOI10.1016/j.jfa.2012.10.014
  12. Gale, D., 10.2307/2320146, Am. Math. Mon. 86 (1979), 818-827. (1979) Zbl0448.90097MR0551501DOI10.2307/2320146
  13. James, R. C., 10.1090/S0002-9947-1964-0165344-2, Trans. Am. Math. Soc. 113 (1964), 129-140. (1964) Zbl0129.07901MR0165344DOI10.1090/S0002-9947-1964-0165344-2
  14. James, R. C., The Eberlein-Šmulian theorem, Functional Analysis. Selected Topics Narosa Publishing House, New Delhi (1998), 47-49. (1998) Zbl1010.46011MR1668790
  15. Kelley, J. L., General Topology, The University Series in Higher Mathematics. D. van Nostrand, New York (1955). (1955) Zbl0066.16604MR0070144
  16. Kolmogorov, A. N., Tikhomirov, V. M., ϵ -entropy and ϵ -capacity of sets in function spaces, Usp. Mat. Nauk 14 (1959), 3-86 Russian. (1959) Zbl0090.33503MR0112032
  17. Krasnosel'skij, M. A., Rutitskij, Y. B., Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen (1961). (1961) Zbl0095.09103MR0126722
  18. Leray, J., Schauder, J., 10.24033/asens.836, Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 French. (1934) Zbl0009.07301MR1509338DOI10.24033/asens.836
  19. Musielak, J., 10.1007/BFb0072210, Lecture Notes in Mathematics 1034. Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434DOI10.1007/BFb0072210
  20. Schlüchtermann, G., 10.1006/jfan.1994.1129, J. Funct. Anal. 125 (1994), 379-388. (1994) Zbl0828.46036MR1297673DOI10.1006/jfan.1994.1129
  21. Shi, S., Shi, Z., 10.4064/bc119-17, Function Spaces XII Banach Center Publications 119. Polish Academy of Sciences, Institute of Mathematics. Warsaw (2019), 295-309. (2019) Zbl1444.46024DOI10.4064/bc119-17
  22. Shi, Z., Wang, Y., 10.1216/RMJ-2018-48-2-639, Rocky Mt. J. Math. 48 (2018), 639-660. (2018) Zbl1402.46013MR3810210DOI10.1216/RMJ-2018-48-2-639
  23. Šmulian, V., On compact sets in the space of measurable functions, Mat. Sb., N. Ser. 15 (1944), 343-346 Russian. (1944) Zbl0060.27602MR0012210
  24. Wu, Y., Normed compact sets and weakly H -compact in Orlicz space, J. Nature 3 (1982), 234 Chinese. (1982) 
  25. Wu, C., Wang, T., Orlicz Spaces and Applications, Heilongjiang Sci. & Tech. Press, Harbin (1983), Chinese. (1983) 
  26. Zhang, X., Shi, Z., A criterion of compact set in Orlicz sequence space l ( M ) , J. Changchun Post Telcommunication Institute 15 (1997), 64-67 Chinese. (1997) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.