Weak dimensions and Gorenstein weak dimensions of group rings

Yueming Xiang

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 3, page 803-816
  • ISSN: 0011-4642

Abstract

top
Let K be a field, and let G be a group. In the present paper, we investigate when the group ring K [ G ] has finite weak dimension and finite Gorenstein weak dimension. We give some analogous versions of Serre’s theorem for the weak dimension and the Gorenstein weak dimension.

How to cite

top

Xiang, Yueming. "Weak dimensions and Gorenstein weak dimensions of group rings." Czechoslovak Mathematical Journal 71.3 (2021): 803-816. <http://eudml.org/doc/297874>.

@article{Xiang2021,
abstract = {Let $K$ be a field, and let $G$ be a group. In the present paper, we investigate when the group ring $K[G]$ has finite weak dimension and finite Gorenstein weak dimension. We give some analogous versions of Serre’s theorem for the weak dimension and the Gorenstein weak dimension.},
author = {Xiang, Yueming},
journal = {Czechoslovak Mathematical Journal},
keywords = {weak dimension; Gorenstein weak dimension; principal module; group ring},
language = {eng},
number = {3},
pages = {803-816},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak dimensions and Gorenstein weak dimensions of group rings},
url = {http://eudml.org/doc/297874},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Xiang, Yueming
TI - Weak dimensions and Gorenstein weak dimensions of group rings
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 803
EP - 816
AB - Let $K$ be a field, and let $G$ be a group. In the present paper, we investigate when the group ring $K[G]$ has finite weak dimension and finite Gorenstein weak dimension. We give some analogous versions of Serre’s theorem for the weak dimension and the Gorenstein weak dimension.
LA - eng
KW - weak dimension; Gorenstein weak dimension; principal module; group ring
UR - http://eudml.org/doc/297874
ER -

References

top
  1. Auslander, M., 10.1090/S0002-9939-1957-0087670-X, Proc. Am. Math. Soc. 8 (1957), 658-664. (1957) Zbl0079.26703MR0087670DOI10.1090/S0002-9939-1957-0087670-X
  2. Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94. American Mathematical Society, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
  3. Bennis, D., Mahdou, N., 10.1090/S0002-9939-09-10099-0, Proc. Am. Math. Soc. 138 (2010), 461-465. (2010) Zbl1205.16007MR2557164DOI10.1090/S0002-9939-09-10099-0
  4. Benson, D. J., Goodearl, K. R., 10.2140/pjm.2000.196.45, Pac. J. Math. 196 (2000), 45-67. (2000) Zbl1073.20500MR1797235DOI10.2140/pjm.2000.196.45
  5. Colby, R. R., 10.1016/0021-8693(75)90049-6, J. Algebra 35 (1975), 239-252. (1975) Zbl0306.16015MR0376763DOI10.1016/0021-8693(75)90049-6
  6. Connell, I. G., 10.4153/CJM-1963-067-0, Can. J. Math. 15 (1963), 650-685. (1963) Zbl0121.03502MR0153705DOI10.4153/CJM-1963-067-0
  7. Emmanouil, I., 10.1016/j.jalgebra.2012.09.018, J. Algebra 372 (2012), 376-396. (2012) Zbl1286.13014MR2990016DOI10.1016/j.jalgebra.2012.09.018
  8. Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
  9. Glaz, S., 10.1007/BFb0084570, Lecture Notes in Mathematics 1371. Springer, Berlin (1989). (1989) Zbl0745.13004MR0999133DOI10.1007/BFb0084570
  10. Govorov, V. E., On flat modules, Sib. Mat. Zh. 6 (1965), 300-304 Russian. (1965) Zbl0156.27104MR0174598
  11. Holm, H., Gorenstein Homological Algebra: Ph.D. Thesis, University of Copenhagen, Copenhagen (2004). (2004) MR2038564
  12. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  13. Lam, T. Y., 10.1007/978-1-4419-8616-0, Graduate Texts in Mathematics 131. Springer, New York (2001). (2001) Zbl0980.16001MR1838439DOI10.1007/978-1-4419-8616-0
  14. Li, L., 10.1090/S0002-9947-2015-06242-4, Trans. Am. Math. Soc. 367 (2015), 6293-6314. (2015) Zbl1329.16020MR3356938DOI10.1090/S0002-9947-2015-06242-4
  15. Passman, D. S., The Algebraic Structure of Group Rings, John Wiley, New York (1977). (1977) Zbl0368.16003MR0470211
  16. Rotman, J. J., 10.1007/b98977, Pure and Applied Mathematics 85. Academic Press, New York (1979). (1979) Zbl0441.18018MR0538169DOI10.1007/b98977
  17. Stammbach, U., 10.1112/jlms/2.Part_3.567, J. Lond. Math. Soc., II. Ser. 2 (1970), 567-570. (1970) Zbl0204.35302MR0263927DOI10.1112/jlms/2.Part_3.567
  18. Swan, R. G., 10.1016/0021-8693(69)90030-1, J. Algebra 12 (1969), 585-601. (1969) Zbl0188.07001MR0240177DOI10.1016/0021-8693(69)90030-1
  19. Xiang, Y., 10.1142/S1005386720000267, Algebra Colloq. 27 (2020), 319-330. (2020) Zbl07202815MR4095944DOI10.1142/S1005386720000267

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.