Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without AC
Amitayu Banerjee; Zalán Gyenis
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 3, page 361-382
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanerjee, Amitayu, and Gyenis, Zalán. "Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without AC." Commentationes Mathematicae Universitatis Carolinae 62.3 (2021): 361-382. <http://eudml.org/doc/297877>.
@article{Banerjee2021,
abstract = {In set theory without the axiom of choice (AC), we observe new relations of the following statements with weak choice principles. $\circ $ If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. $\circ $ If in a partially ordered set, all chains are finite and all antichains have size $\aleph _\{\alpha \}$, then the set has size $\aleph _\{\alpha \}$ for any regular $\aleph _\{\alpha \}$. $\circ $ Every partially ordered set without a maximal element has two disjoint cofinal sub sets – CS. $\circ $ Every partially ordered set has a cofinal well-founded subset – CWF. $\circ $ Dilworth’s decomposition theorem for infinite partially ordered sets of finite width – DT. We also study a graph homomorphism problem and a problem due to A. Hajnal without AC. Further, we study a few statements restricted to linearly-ordered structures without AC.},
author = {Banerjee, Amitayu, Gyenis, Zalán},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {chromatic number of product of graphs; ultrafilter lemma; permutation model; Dilworth's theorem; chain; antichain; Loeb's theorem; application of Loeb's theorem},
language = {eng},
number = {3},
pages = {361-382},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without AC},
url = {http://eudml.org/doc/297877},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Banerjee, Amitayu
AU - Gyenis, Zalán
TI - Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without AC
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 3
SP - 361
EP - 382
AB - In set theory without the axiom of choice (AC), we observe new relations of the following statements with weak choice principles. $\circ $ If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. $\circ $ If in a partially ordered set, all chains are finite and all antichains have size $\aleph _{\alpha }$, then the set has size $\aleph _{\alpha }$ for any regular $\aleph _{\alpha }$. $\circ $ Every partially ordered set without a maximal element has two disjoint cofinal sub sets – CS. $\circ $ Every partially ordered set has a cofinal well-founded subset – CWF. $\circ $ Dilworth’s decomposition theorem for infinite partially ordered sets of finite width – DT. We also study a graph homomorphism problem and a problem due to A. Hajnal without AC. Further, we study a few statements restricted to linearly-ordered structures without AC.
LA - eng
KW - chromatic number of product of graphs; ultrafilter lemma; permutation model; Dilworth's theorem; chain; antichain; Loeb's theorem; application of Loeb's theorem
UR - http://eudml.org/doc/297877
ER -
References
top- Banaschewski B., 10.1002/malq.19920380136, Z. Math. Logik Grundlag. Math. 38 (1992), no. 4, 383–385. DOI10.1002/malq.19920380136
- Cowen R. H., 10.1305/ndjfl/1093887927, Notre Dame J. Formal Logic 18 (1977), no. 2, 243–247. DOI10.1305/ndjfl/1093887927
- Dilworth R. P., 10.2307/1969503, Ann. of Math. (2) 51 (1950), 161–166. DOI10.2307/1969503
- Hajnal A., 10.1007/BF02579376, Combinatorica 5 (1985), no. 2, 137–139. DOI10.1007/BF02579376
- Halbeisen L., Tachtsis E., 10.1007/s00153-019-00705-7, Arch. Math. Logic 59 (2020), no. 5–6, 583–606. DOI10.1007/s00153-019-00705-7
- Hall M. Jr., 10.1090/S0002-9904-1948-09098-X, Bull. Amer. Math. Soc. 54 (1948), 922–926. DOI10.1090/S0002-9904-1948-09098-X
- Howard P. E., 10.4064/fm-121-1-17-23, Fund. Math. 121 (1984), no. 1, 17–23. DOI10.4064/fm-121-1-17-23
- Howard P., Rubin J. E., 10.1090/surv/059, Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. Zbl0947.03001DOI10.1090/surv/059
- Howard P., Saveliev D. I., Tachtsis E., 10.1002/malq.201400089, MLQ Math. Log. Q. 62 (2016), no. 3, 155–176. DOI10.1002/malq.201400089
- Howard P., Tachtsis E., 10.1002/malq.201200049, MLQ Math. Log. Q. 59 (2013), no. 3, 128–146. Zbl1278.03082DOI10.1002/malq.201200049
- Jech T. J., The Axiom of Choice, Studies in Logic and the Foundations of Mathematics, 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1973. Zbl0259.02052
- Keremedis K., 10.1002/1521-3870(200010)46:4<569::AID-MALQ569>3.0.CO;2-J, MLQ Math. Log. Q. 46 (2000), no. 4, 569–571. DOI10.1002/1521-3870(200010)46:4<569::AID-MALQ569>3.0.CO;2-J
- Komjáth P., Totik V., Problems and Theorems in Classical Set Theory, Problem Books in Mathematics, Springer, New York, 2006.
- Loeb P. A., 10.1080/00029890.1965.11970596, Amer. Math. Monthly 72 (1965), no. 7, 711–717. DOI10.1080/00029890.1965.11970596
- Łoś J., Ryll-Nardzewski C., 10.4064/fm-38-1-233-237, Fund. Math. 38 (1951), no. 1, 233–237. DOI10.4064/fm-38-1-233-237
- Tachtsis E., 10.1002/malq.201400115, MLQ Math. Log. Q. 62 (2016), no. 3, 190–203. DOI10.1002/malq.201400115
- Tachtsis E., 10.1017/jsl.2015.47, J. Symb. Log. 81 (2016), no. 1, 384–394. DOI10.1017/jsl.2015.47
- Tachtsis E., 10.1007/s00153-017-0595-y, Arch. Math. Logic. 57 (2018), no. 5–6, 665–686. DOI10.1007/s00153-017-0595-y
- Tachtsis E., 10.1007/s10474-019-00967-w, Acta Math. Hungar. 159 (2019), no. 2, 603–617. DOI10.1007/s10474-019-00967-w
- Tachtsis E., 10.1002/malq.201700074, MLQ Math. Log. Q. 65 (2019), no. 3, 280–292. DOI10.1002/malq.201700074
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.