Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations

Shanshan Yang; Hongbiao Jiang; Yinhe Lin

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 1189-1198
  • ISSN: 0011-4642

Abstract

top
We study compressible isentropic Navier-Stokes-Poisson equations in 3 . With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.

How to cite

top

Yang, Shanshan, Jiang, Hongbiao, and Lin, Yinhe. "Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations." Czechoslovak Mathematical Journal 71.4 (2021): 1189-1198. <http://eudml.org/doc/297886>.

@article{Yang2021,
abstract = {We study compressible isentropic Navier-Stokes-Poisson equations in $\{\mathbb \{R\}\}^3$. With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.},
author = {Yang, Shanshan, Jiang, Hongbiao, Lin, Yinhe},
journal = {Czechoslovak Mathematical Journal},
keywords = {compressible isentropic Navier-Stokes-Poisson equation; unipolar; energy solution; blow-up},
language = {eng},
number = {4},
pages = {1189-1198},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations},
url = {http://eudml.org/doc/297886},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Yang, Shanshan
AU - Jiang, Hongbiao
AU - Lin, Yinhe
TI - Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1189
EP - 1198
AB - We study compressible isentropic Navier-Stokes-Poisson equations in ${\mathbb {R}}^3$. With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.
LA - eng
KW - compressible isentropic Navier-Stokes-Poisson equation; unipolar; energy solution; blow-up
UR - http://eudml.org/doc/297886
ER -

References

top
  1. Cho, Y., Jin, B. J., 10.1016/j.jmaa.2005.08.005, J. Math. Anal. Appl. 320 (2006), 819-826. (2006) Zbl1121.35110MR2225997DOI10.1016/j.jmaa.2005.08.005
  2. Dong, J., Ju, Q., 10.1360/N012018-00134, Sci. Sin., Math. 50 (2020), 873-884 Chinese. (2020) DOI10.1360/N012018-00134
  3. Dong, J., Zhu, J., Wang, Y., 10.21136/CMJ.2019.0156-18, Czech. Math. J. 70 (2020), 9-19. (2020) Zbl07217119MR4078344DOI10.21136/CMJ.2019.0156-18
  4. Gamba, I. M., Gualdani, M. P., Zhang, P., 10.1007/s00605-009-0092-4, Monatsh Math. 157 (2009), 37-54. (2009) Zbl1173.35106MR2504777DOI10.1007/s00605-009-0092-4
  5. Guo, B., Wang, G., 10.1016/j.jde.2016.06.007, J. Differ. Equations 261 (2016), 3815-3842. (2016) Zbl1354.35123MR3532056DOI10.1016/j.jde.2016.06.007
  6. Guo, B., Wang, G., 10.1063/1.4978331, J. Math. Phys. 58 (2017), Article ID 031505, 11 pages. (2017) Zbl1359.76348MR3626024DOI10.1063/1.4978331
  7. Jiu, Q., Wang, Y., Xin, Z., 10.1016/j.jde.2015.04.007, J. Differ. Equations 259 (2015), 2981-3003. (2015) Zbl1319.35194MR3360663DOI10.1016/j.jde.2015.04.007
  8. Lai, N.-A., 10.1016/j.nonrwa.2015.03.005, Nonlinear Anal., Real World Appl. 25 (2015), 112-117. (2015) Zbl1327.35299MR3351014DOI10.1016/j.nonrwa.2015.03.005
  9. Lei, Z., Du, Y., Zhang, Q., 10.4310/MRL.2013.v20.n1.a4, Math. Res. Lett. 20 (2013), 41-50. (2013) Zbl1284.35329MR3126720DOI10.4310/MRL.2013.v20.n1.a4
  10. Rozanova, O., 10.1016/j.jde.2008.07.007, J. Differ. Equations 245 (2008), 1762-1774. (2008) Zbl1154.35070MR2433485DOI10.1016/j.jde.2008.07.007
  11. Wang, G., Guo, B., Fang, S., 10.1002/mma.4384, Math. Methods Appl. Sci. 40 (2017), 5262-5272. (2017) Zbl1383.35034MR3689262DOI10.1002/mma.4384
  12. Xin, Z., 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C, Commun. Pure Appl. Math. 51 (1998), 229-240. (1998) Zbl0937.35134MR1488513DOI10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
  13. Xin, Z., Yan, W., 10.1007/s00220-012-1610-0, Commun. Math. Phys. 321 (2013), 529-541. (2013) Zbl1287.35059MR3063918DOI10.1007/s00220-012-1610-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.