On an entire function represented by multiple Dirichlet series

Lakshika Chutani

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 3, page 279-288
  • ISSN: 0862-7959

Abstract

top
Consider the space L of entire functions represented by multiple Dirichlet series that becomes a non uniformly convex Banach space which is also proved to be dense, countable and separable. Continuing further, for the given space L the characterization of bounded linear transformations in terms of matrix and characterization of linear functional has been obtained.

How to cite

top

Chutani, Lakshika. "On an entire function represented by multiple Dirichlet series." Mathematica Bohemica 146.3 (2021): 279-288. <http://eudml.org/doc/297890>.

@article{Chutani2021,
abstract = {Consider the space $L$ of entire functions represented by multiple Dirichlet series that becomes a non uniformly convex Banach space which is also proved to be dense, countable and separable. Continuing further, for the given space $L$ the characterization of bounded linear transformations in terms of matrix and characterization of linear functional has been obtained.},
author = {Chutani, Lakshika},
journal = {Mathematica Bohemica},
keywords = {Dirichlet series; Banach algebra},
language = {eng},
number = {3},
pages = {279-288},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an entire function represented by multiple Dirichlet series},
url = {http://eudml.org/doc/297890},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Chutani, Lakshika
TI - On an entire function represented by multiple Dirichlet series
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 3
SP - 279
EP - 288
AB - Consider the space $L$ of entire functions represented by multiple Dirichlet series that becomes a non uniformly convex Banach space which is also proved to be dense, countable and separable. Continuing further, for the given space $L$ the characterization of bounded linear transformations in terms of matrix and characterization of linear functional has been obtained.
LA - eng
KW - Dirichlet series; Banach algebra
UR - http://eudml.org/doc/297890
ER -

References

top
  1. Akanksha, A., Srivastava, G. S., 10.1007/s11464-014-0396-0, Front. Math. China 9 (2014), 1239-1252. (2014) Zbl1308.30004MR3260996DOI10.1007/s11464-014-0396-0
  2. Azpeitia, A. G., 10.2307/2034864, Proc. Am. Math. Soc. 12 (1961), 722-723. (1961) Zbl0126.29101MR0126534DOI10.2307/2034864
  3. Azpeitia, A. G., 10.2307/2034863, Proc. Am. Math. Soc. 12 (1961), 717-721. (1961) Zbl0126.29003MR0126533DOI10.2307/2034863
  4. Azpeitia, A. G., 10.1093/qmath/15.1.275, Q. J. Math., Oxf. II. Ser. 15 (1964), 275-277. (1964) Zbl0129.29003MR0168736DOI10.1093/qmath/15.1.275
  5. Behnam, H. S., Srivastava, G. S., 10.1007/BF02837109, Approximation Theory Appl. 18 (2002), 1-14. (2002) Zbl1017.32007MR1942346DOI10.1007/BF02837109
  6. Cahen, E., 10.24033/asens.401, Ann. Sci. Éc. Norm. Supér. (3) 11 (1894), 75-164 French 9999JFM99999 25.0702.01. (1894) MR1508903DOI10.24033/asens.401
  7. Dagene, E., The central index of Dirichlet series, Litov. Mat. Sb. 8 (1968), 503-520 Russian. (1968) Zbl0183.06902MR0245763
  8. Daoud, S., On the class of entire Dirichlet functions of several complex variables having finite order point, Port. Math. 43 (1986), 417-427. (1986) Zbl0636.46019MR0911448
  9. Estermann, T., 10.1112/plms/s2-27.1.435, Proc. Lond. Math. Soc. (2) 27 (1928), 435-448 9999JFM99999 54.0366.03. (1928) MR1575403DOI10.1112/plms/s2-27.1.435
  10. Janusauskas, A. I., Elementary theorems on convergence of double Dirichlet series, Sov. Math., Dokl. 18 (1977), 610-614 translation from Dokl. Akad. Nauk. SSSR 234 1977 34-37. (1977) Zbl0388.40003MR0442265
  11. Kong, Y., On some q -orders and q -types of Dirichlet-Hadamard product function, Acta Math. Sin., Chin. Ser. Chinese 52 (2009), 1165-1172. (2009) Zbl1212.30004MR2640624
  12. Kong, Y., Gan, H., On orders and types of Dirichlet series of slow growth, Turk. J. Math. 34 (2010), 1-11. (2010) Zbl1189.30004MR2654411
  13. Kumar, N., Chutani, L., Manocha, G., Certain results on a class of entire Dirichlet series in two variables, Sci. Magna 11 (2016), 33-40. (2016) MR3817299
  14. Kumar, N., Manocha, G., 10.1016/S0252-9602(13)60105-8, Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 1571-1578. (2013) Zbl1313.30007MR3116603DOI10.1016/S0252-9602(13)60105-8
  15. Kumar, N., Manocha, G., 10.1016/j.joems.2012.10.008, J. Egypt. Math. Soc. 21 (2013), 21-24. (2013) Zbl1277.30004MR3040754DOI10.1016/j.joems.2012.10.008
  16. Kumar, N., Manocha, G., 10.21136/MB.2017.0066-16, Math. Bohem. 143 (2018), 1-9. (2018) Zbl06861588MR3778046DOI10.21136/MB.2017.0066-16
  17. Larsen, R., Banach Algebras: An Introduction, Pure and Applied Mathematics 24. Marcel Dekker, New York (1973). (1973) Zbl0264.46042MR0487369
  18. Larsen, R., Functional Analysis: An Introduction, Pure and Applied Mathematics 15. Marcel Dekker, New York (1973). (1973) Zbl0261.46001MR0461069
  19. Leonard, I. E., 10.1016/0022-247X(76)90248-1, J. Math. Anal. Appl. 54 (1976), 245-265. (1976) Zbl0343.46010MR0420216DOI10.1016/0022-247X(76)90248-1
  20. Liang, M., Gao, Z., 10.1016/S0252-9602(10)60157-9, Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 1640-1648. (2010) Zbl1240.30016MR2778633DOI10.1016/S0252-9602(10)60157-9
  21. Rahman, Q. I., A note on entire functions defined by Dirichlet series, Math. Student 24 (1956), 203-207. (1956) Zbl0082.05801MR0086125
  22. Rahman, Q. I., 10.1093/qmath/7.1.192, Q. J. Math., Oxf. II. Ser. 7 (1956), 192-195. (1956) Zbl0073.06601MR0095941DOI10.1093/qmath/7.1.192
  23. Rahman, Q. I., 10.1093/qmath/7.1.96, Q. J. Math., Oxf. II. Ser. 7 (1956), 96-99. (1956) Zbl0074.29901MR0098830DOI10.1093/qmath/7.1.96
  24. Rahman, Q. I., 10.2748/tmj/1178245013, Tôhoku Math. J., II. Ser. 8 (1956), 108-113. (1956) Zbl0074.29803MR0080153DOI10.2748/tmj/1178245013
  25. Rahman, Q. I., 10.1090/S0002-9939-1959-0122968-X, Proc. Am. Math. Soc. 10 (1959), 213-215. (1959) Zbl0095.27803MR0122968DOI10.1090/S0002-9939-1959-0122968-X
  26. Rahman, Q. I., 10.1090/S0002-9939-1960-0122969-X, Proc. Am. Math. Soc. 11 (1960), 624-625. (1960) Zbl0107.28202MR0122969DOI10.1090/S0002-9939-1960-0122969-X
  27. Sarkar, P. K., On the Gol'dberg order and Gol'dberg type of an entire function of several complex variables represented by multiple Dirichlet series, Indian J. Pure Appl. Math. 13 (1982), 1221-1229. (1982) Zbl0513.32005MR0679065
  28. Tanaka, C., 10.2748/tmj/1178245352, Tôhoku Math. J., II. Ser. 5 (1953), 67-78. (1953) Zbl0053.37502MR0057320DOI10.2748/tmj/1178245352
  29. Tanaka, C., Note on Dirichlet series. VI: On the integral functions defined by Dirichlet series. II, Mem. Sch. Sci. Eng., Waseda Univ. 17 (1953), 85-94. (1953) MR0060013
  30. Tanaka, C., 10.3792/pja/1195570554, Proc. Japan Acad. 29 (1953), 423-426. (1953) Zbl0052.30002MR0062253DOI10.3792/pja/1195570554
  31. Vaish, S. K., On the coefficients of entire multiple Dirichlet series of several complex variables, Bull. Math. Soc. Sci. Roum., Nouv. Sér. 46 (2003), 195-202. (2003) Zbl1084.30511MR2094187

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.