On the Jensen-Shannon divergence and the variation distance for categorical probability distributions
Jukka Corander; Ulpu Remes; Timo Koski
Kybernetika (2021)
- Volume: 57, Issue: 6, page 879-907
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCorander, Jukka, Remes, Ulpu, and Koski, Timo. "On the Jensen-Shannon divergence and the variation distance for categorical probability distributions." Kybernetika 57.6 (2021): 879-907. <http://eudml.org/doc/297892>.
@article{Corander2021,
abstract = {We establish a decomposition of the Jensen-Shannon divergence into a linear combination of a scaled Jeffreys' divergence and a reversed Jensen-Shannon divergence. Upper and lower bounds for the Jensen-Shannon divergence are then found in terms of the squared (total) variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker inequality. We use these bounds to prove the asymptotic equivalence of the maximum likelihood estimate and minimum Jensen-Shannon divergence estimate as well as the asymptotic consistency of the minimum Jensen-Shannon divergence estimate. These are key properties for likelihood-free simulator-based inference.},
author = {Corander, Jukka, Remes, Ulpu, Koski, Timo},
journal = {Kybernetika},
keywords = {blended divergences; Chan-Darwiche metric; likelihood-free inference; implicit maximum likelihood; reverse Pinsker inequality; simulator-based inference},
language = {eng},
number = {6},
pages = {879-907},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the Jensen-Shannon divergence and the variation distance for categorical probability distributions},
url = {http://eudml.org/doc/297892},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Corander, Jukka
AU - Remes, Ulpu
AU - Koski, Timo
TI - On the Jensen-Shannon divergence and the variation distance for categorical probability distributions
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 6
SP - 879
EP - 907
AB - We establish a decomposition of the Jensen-Shannon divergence into a linear combination of a scaled Jeffreys' divergence and a reversed Jensen-Shannon divergence. Upper and lower bounds for the Jensen-Shannon divergence are then found in terms of the squared (total) variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker inequality. We use these bounds to prove the asymptotic equivalence of the maximum likelihood estimate and minimum Jensen-Shannon divergence estimate as well as the asymptotic consistency of the minimum Jensen-Shannon divergence estimate. These are key properties for likelihood-free simulator-based inference.
LA - eng
KW - blended divergences; Chan-Darwiche metric; likelihood-free inference; implicit maximum likelihood; reverse Pinsker inequality; simulator-based inference
UR - http://eudml.org/doc/297892
ER -
References
top- Barnet, N. S., Dragomir, S., , In: Advances in Inequalities from Probability Theory and Statistics (N. S. Barnett and S. S. Dragomir, eds.), Nova Science Publishing, New York 2008, pp. 1-85. MR2459969DOI
- Basseville, M., , Signal Processing 93 (2013), 621-633. DOI
- Berend, D., Kontorovich, A., 10.1016/j.spl.2013.01.023, Stat. Probab. Lett. 83 (2013), 1254-259. MR3041401DOI10.1016/j.spl.2013.01.023
- Tutorial, BOLFI, Manual, https://elfi.readthedocs.io/en/latest/usage/BOLFI.html, 2017.
- Böhm, U., Dahm, P. F., McAllister, B. F., Greenbaum, I. F., 10.1007/BF00225189, Human Genetics 95 (1995), 249-256. DOI10.1007/BF00225189
- Chan, H., Darwiche, A., , Int. J. Approx. Reasoning 38 (2005), 149-174. MR2116782DOI
- Chan, H., Darwiche, A., 10.1016/j.artint.2004.09.005, Artif. Intell. 163 (2005), 67-90. MR2120039DOI10.1016/j.artint.2004.09.005
- Charalambous, C. D., Tzortzis, I., Loyka, S., Charalambous, T., , IEEE Trans. Automat. Control 59 (2014), 2353-2368. MR3254531DOI
- Corander, J., Fraser, C., Gutmann, M. U., Arnold, B., Hanage, W. P., Bentley, S. D., Lipsitch, M., Croucher, N. J., , Nature Ecology Evolution 1 (2017), 1950-1960. DOI
- Cover, Th. M., Thomas, J. A., Elements of Information Theory. Second edition., John Wiley and Sons, New York 2012. MR2239987
- Cranmer, K., Brehmer, J., Louppe, G., , Proc. Natl. Acad. Sci. USA 117 (2020), 30055-30062. MR4263287DOI
- Csiszár, I., Talata, Z., , IEEE Trans. Inform. Theory 52 (2006), 1007-1016. MR2238067DOI
- Csiszár, I., Shields, P. C., Information Theory and Statistics: A tutorial., Now Publishers Inc, Delft 2004.
- Devroye, L., 10.1214/aos/1176346255, Ann. Statist. 11 (1983), 896-904. MR0707939DOI10.1214/aos/1176346255
- Diggle, P. J., Gratton, R. J., Monte Carlo methods of inference for implicit statistical models., J. R. Stat. Soc. Ser. B. Stat. Methodol. 46, (1984), 193-212. MR0781880
- M.Endre, D., Schindelin, J. E., , IEEE Trans. Inform. Theory 49 (2003), 1858-1860. MR1985590DOI
- Fedotov, A. A., Harremoës, P., Topsøe, F., , IEEE Trans. Inform. Theory 49 (2003), 1491-1498. MR1984937DOI
- Gibbs, A. L., Su, F. E., , Int. Stat. Rev. 70 (2002), 419-435. DOI
- Guntuboyina, A., , IEEE Trans. Inform. Theory 57 (2011), 2386-2399. MR2809097DOI
- Gutmann, M. U., Corander, J., Bayesian optimization for likelihood-free inference of simulator-based statistical models., J. Mach. Learn. Res. 17, (2016), 4256-4302. MR3555016
- Gyllenberg, M., Koski, T., Reilink, E., Verlaan, M., , J. App. Prob. 31 (1994), 542-548. MR1274807DOI
- Gyllenberg, M., Koski, T., , J. Classification 13 (1996), 213-229. MR1421666DOI
- Holopainen, I., Evaluating Uncertainty with Jensen-Shannon Divergence., Master's Thesis, Faculty of Science, University of Helsinki 2021.
- Hou, C-D., Chiang, J., Tai, J. J., , Biometrics 57 (2001), 435-440. MR1855677DOI
- Janžura, M., Boček, P., A method for knowledge integration., Kybernetika 34 (1998), 41-55. MR1619054
- Jardine, N., Sibson, R., Mathematical Taxonomy., J. Wiley and Sons, London 1971. MR0441395
- Khosravifard, M., Fooladivanda, D., Gulliver, T. A., Exceptionality of the variational distance., In: 2006 IEEE Information Theory Workshop-ITW'06 Chengdu 2006, pp. 274-276.
- Koski, T., Probability Calculus for Data Science., Studentlitteratur, Lund 2020.
- Kůs, V., Blended -divergences with examples., Kybernetika 39 (2003), 43-54. MR1980123
- Kůs, V., Morales, D., Vajda, I., , Kybernetika 44 (2008), 95-112. MR2405058DOI
- LeCam, L., , Ann. Math. Statist. 41 (1970), 802-828. MR0267676DOI
- Liese, F., Vajda, I., , IEEE Trans. Inform. Theory 52 (2006), 4394-4412. MR2300826DOI
- Li, K., Mitendra, J., Implicit maximum likelihood estimation., arXiv preprint arXiv:1809.09087, 2018).
- Lin, J., , IEEE Trans. Inform. Theory 37 (1991), 145-151. MR1087893DOI
- Lintusaari, J., Gutmann, M. U, Dutta, R., Kaski, S., Corander, J., Fundamentals and recent developments in approximate Bayesian computation., Systematic Biology 66 (2017), e66-e82.
- Lintusaari, J., Vuollekoski, H., Kangasrääsiö, A., Skytén, K., Järvenpää, M., Marttinen, P., Gutmann, M. U., Vehtari, A., Corander, J., Kaski, S., ELFI: Engine for likelihood-free inference., J. Mach. Learn. Res. 19 (2018), 1-7. MR3862423
- Morales, D., Pardo, L., Vajda, I., , J. Statist. Plann. Inference 48 (1995), 347-369. MR1368984DOI
- Nowozin, S., Cseke, B., Tomioka, R., f-gan: Training generative neural samplers using variational divergence minimization., Advances Neural Inform. Process. Systems (2016), 271-279.
- Okamoto, M., , Ann. Inst.of Statist. Math. 10 (1959), 29-35. MR0099733DOI
- Sason, I., , Entropy 20 (2018), 383-405. MR3862573DOI
- Sason, I., Verdu, S., , IEEE Trans. Inform. Theory 62 (2016), 5973-6006. MR3565096DOI
- Shannon, M., Properties of f-divergences and f-GAN training., arXiv preprint arXiv:2009.00757, 2020.
- Sibson, R., , Z. Wahrsch. Verw. Geb. 14 (1969), 149-160. MR0258198DOI
- Sinn, M., Rawat, A., Non-parametric estimation of Jensen-Shannon divergence in generative adversarial network training., In: International Conference on Artificial Intelligence and Statistics 2018, pp. 642-651.
- Taneja, I. J., On mean divergence measures., In: Advances in Inequalities from Probability Theory and Statistics (N. S. Barnett and S. S. Dragomir, eds.), Nova Science Publishing, New York 2008, pp. 169-186. MR2459974
- Topsøe, F., Information-theoretical optimization techniques., Kybernetika 15 (1979), 8-27. MR0529888
- Topsøe, F., , IEEE Trans. Inform. Theory 46 (2000), 1602-1609. MR1768575DOI
- Vajda, I., , IEEE Trans. Inform. Theory 16 (1970), 771-773. MR0275575DOI
- Vajda, I., Theory of Statistical Inference and Information., Kluwer Academic Publ., Delft 1989.
- Vajda, I., , Kybernetika 45 (2009), 885-900. MR2650071DOI
- Jr., J. I. Yellott, , J. Math. Psych. 15 (1977), 109-144. MR0449795DOI
- Österreicher, F., Vajda, I., , IEEE Trans. Inform. Theory 39 (1993), 1036-1039. MR1237725DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.