On weakened ( α , δ ) -skew Armendariz rings

Alireza Majdabadi Farahani; Mohammad Maghasedi; Farideh Heydari; Hamidagha Tavallaee

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 2, page 187-200
  • ISSN: 0862-7959

Abstract

top
In this note, for a ring endomorphism α and an α -derivation δ of a ring R , the notion of weakened ( α , δ ) -skew Armendariz rings is introduced as a generalization of α -rigid rings and weak Armendariz rings. It is proved that R is a weakened ( α , δ ) -skew Armendariz ring if and only if T n ( R ) is weakened ( α ¯ , δ ¯ ) -skew Armendariz if and only if R [ x ] / ( x n ) is weakened ( α ¯ , δ ¯ ) -skew Armendariz ring for any positive integer n .

How to cite

top

Farahani, Alireza Majdabadi, et al. "On weakened $(\alpha ,\delta )$-skew Armendariz rings." Mathematica Bohemica 147.2 (2022): 187-200. <http://eudml.org/doc/297918>.

@article{Farahani2022,
abstract = {In this note, for a ring endomorphism $\alpha $ and an $\alpha $-derivation $\delta $ of a ring $R$, the notion of weakened $(\alpha ,\delta )$-skew Armendariz rings is introduced as a generalization of $\alpha $-rigid rings and weak Armendariz rings. It is proved that $R$ is a weakened $(\alpha ,\delta )$-skew Armendariz ring if and only if $T_n(R)$ is weakened $(\bar\{\alpha \},\bar\{\delta \})$-skew Armendariz if and only if $R[x]/(x^n)$ is weakened $(\bar\{\alpha \},\bar\{\delta \})$-skew Armendariz ring for any positive integer $n$.},
author = {Farahani, Alireza Majdabadi, Maghasedi, Mohammad, Heydari, Farideh, Tavallaee, Hamidagha},
journal = {Mathematica Bohemica},
keywords = {Armendariz ring; $(\alpha ,\delta )$-skew Armendariz ring; weak Armendariz ring; weak $(\alpha ,\delta )$-skew Armendariz ring},
language = {eng},
number = {2},
pages = {187-200},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On weakened $(\alpha ,\delta )$-skew Armendariz rings},
url = {http://eudml.org/doc/297918},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Farahani, Alireza Majdabadi
AU - Maghasedi, Mohammad
AU - Heydari, Farideh
AU - Tavallaee, Hamidagha
TI - On weakened $(\alpha ,\delta )$-skew Armendariz rings
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 187
EP - 200
AB - In this note, for a ring endomorphism $\alpha $ and an $\alpha $-derivation $\delta $ of a ring $R$, the notion of weakened $(\alpha ,\delta )$-skew Armendariz rings is introduced as a generalization of $\alpha $-rigid rings and weak Armendariz rings. It is proved that $R$ is a weakened $(\alpha ,\delta )$-skew Armendariz ring if and only if $T_n(R)$ is weakened $(\bar{\alpha },\bar{\delta })$-skew Armendariz if and only if $R[x]/(x^n)$ is weakened $(\bar{\alpha },\bar{\delta })$-skew Armendariz ring for any positive integer $n$.
LA - eng
KW - Armendariz ring; $(\alpha ,\delta )$-skew Armendariz ring; weak Armendariz ring; weak $(\alpha ,\delta )$-skew Armendariz ring
UR - http://eudml.org/doc/297918
ER -

References

top
  1. Alhevaz, A., Moussavi, A., Habibi, M., 10.1080/00927872.2010.548842, Commun. Algebra 40 (2012), 1195-1221. (2012) Zbl1260.16024MR2912979DOI10.1080/00927872.2010.548842
  2. Anderson, D. D., Camillo, V., 10.1080/00927879808826274, Commun. Algebra 26 (1998), 2265-2272. (1998) Zbl0915.13001MR1626606DOI10.1080/00927879808826274
  3. Anderson, D. D., Camillo, V., 10.1080/00927879908826596, Commun. Algebra 27 (1999), 2847-2852. (1999) Zbl0929.16032MR1687281DOI10.1080/00927879908826596
  4. Annin, S., 10.1081/AGB-120003481, Commun. Algebra 30 (2002), 2511-2528. (2002) Zbl1010.16025MR1904650DOI10.1081/AGB-120003481
  5. Armendariz, E. P., 10.1017/S1446788700029190, J. Aust. Math. Soc. 18 (1974), 470-473. (1974) Zbl0292.16009MR0366979DOI10.1017/S1446788700029190
  6. Chen, J., Yang, X., Zhou, Y., 10.1080/00927870600860791, Commun. Algebra 34 (2006), 3659-3674. (2006) Zbl1114.16024MR2262376DOI10.1080/00927870600860791
  7. Chen, J., Zhou, Y., 10.1080/00927870500346263, Commun. Algebra 34 (2006), 275-288. (2006) Zbl1112.16002MR2194766DOI10.1080/00927870500346263
  8. Chen, W., Cui, S., On weakly semicommutative rings, Commun. Math. Res. 27 (2011), 179-192. (2011) Zbl1249.16041MR2808276
  9. Habibi, M., Moussavi, A., 10.1142/S1793557112500179, Asian-Eur. J. Math. 5 (2012), Article ID 1250017, 16 pages. (2012) Zbl1263.16028MR2959844DOI10.1142/S1793557112500179
  10. Hashemi, E., Moussavi, A., 10.1007/s10474-005-0191-1, Acta. Math. Hung. 107 (2005), 207-224. (2005) Zbl1081.16032MR2148584DOI10.1007/s10474-005-0191-1
  11. Hirano, Y., On the uniqueness of rings of coefficients in skew polynomial rings, Publ. Math. 54 (1999), 489-495. (1999) Zbl0930.16018MR1694531
  12. Hong, C. Y., Kim, H. K., Kim, N. K., Kwak, T. K., Lee, Y., Park, K. S., 10.1080/00927870601117597, Commun. Algebra 35 (2007), 1379-1390. (2007) Zbl1121.16021MR2313674DOI10.1080/00927870601117597
  13. Hong, C. Y., Kim, N. K., Kwak, T. K., 10.1016/S0022-4049(99)00020-1, J. Pure Appl. Algebra 151 (2000), 215-226. (2000) Zbl0982.16021MR1776431DOI10.1016/S0022-4049(99)00020-1
  14. Huh, C., Lee, Y., Smoktunowicz, A., 10.1081/AGB-120013179, Commun. Algebra 30 (2002), 751-761. (2002) Zbl1023.16005MR1883022DOI10.1081/AGB-120013179
  15. Kim, N. K., Lee, Y., 10.1006/jabr.1999.8017, J. Algebra 223 (2000), 477-488. (2000) Zbl0957.16018MR1735157DOI10.1006/jabr.1999.8017
  16. Kim, N. K., Lee, Y., 10.1016/S0022-4049(03)00109-9, J. Pure Appl. Algebra 185 (2003), 207-223. (2003) Zbl1040.16021MR2006427DOI10.1016/S0022-4049(03)00109-9
  17. Krempa, J., Some examples of reduced rings, Algebra Colloq. 3 (1996), 289-300. (1996) Zbl0859.16019MR1422968
  18. Lam, T. Y., Leroy, A., Matczuk, J., 10.1080/00927879708826000, Commun. Algebra 25 (1997), 2459-2506. (1997) Zbl0879.16016MR1459571DOI10.1080/00927879708826000
  19. Lambek, J., 10.4153/CMB-1971-065-1, Can. Math. Bull. 14 (1971), 359-368. (1971) Zbl0217.34005MR0313324DOI10.4153/CMB-1971-065-1
  20. Liu, Z., Zhao, R., 10.1080/00927870600651398, Commun. Algebra 34 (2006), 2607-2616. (2006) Zbl1110.16026MR2240395DOI10.1080/00927870600651398
  21. Moussavi, A., Hashemi, E., 10.4134/JKMS.2005.42.2.353, J. Korean Math. Soc. 42 (2005), 353-363. (2005) Zbl1090.16012MR2121504DOI10.4134/JKMS.2005.42.2.353
  22. Rege, M. B., Chhawchharia, S., 10.3792/pjaa.73.14, Proc. Japan Acad., Ser. A 73 (1997), 14-17. (1997) Zbl0960.16038MR1442245DOI10.3792/pjaa.73.14
  23. Shin, G., 10.1090/S0002-9947-1973-0338058-9, Trans. Am. Math. Soc. 184 (1973), 43-60. (1973) Zbl0283.16021MR0338058DOI10.1090/S0002-9947-1973-0338058-9
  24. Wang, Y., Jiang, M., Ren, Y., 10.13447/j.1674-5647.2016.01.05, Commun. Math. Res. 32 (2016), 70-82. (2016) Zbl1363.16075MR3467810DOI10.13447/j.1674-5647.2016.01.05

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.