On atomic ideals in some factor rings of
Commentationes Mathematicae Universitatis Carolinae (2021)
- Issue: 2, page 259-263
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topOlfati, Alireza. "On atomic ideals in some factor rings of $C(X,\mathbb {Z})$." Commentationes Mathematicae Universitatis Carolinae (2021): 259-263. <http://eudml.org/doc/297939>.
@article{Olfati2021,
abstract = {A nonzero $R$-module $M$ is atomic if for each two nonzero elements $a, b$ in $M$, both cyclic submodules $Ra$ and $Rb$ have nonzero isomorphic submodules. In this article it is shown that for an infinite $P$-space $X$, the factor rings $C(X,\mathbb \{Z\})/C_F(X,\mathbb \{Z\})$ and $C_c(X)/C_F(X)$ have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set $X$, the factor ring $\mathbb \{Z\}^X/ \mathbb \{Z\}^\{(X)\}$ has no atomic ideal. Another result is that for each infinite $P$-space $X$, the socle of the factor ring $C_c(X)/C_F(X)$ is always equal to zero. Also, zero-dimensional spaces $X$ are characterized for which $C^F(X,\mathbb \{Z\})/C_F(X,\mathbb \{Z\})$ have atomic ideals.},
author = {Olfati, Alireza},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$P$-space; rings of integer-valued continuous functions; functionally countable subalgebra; atomic ideal; socle},
language = {eng},
number = {2},
pages = {259-263},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On atomic ideals in some factor rings of $C(X,\mathbb \{Z\})$},
url = {http://eudml.org/doc/297939},
year = {2021},
}
TY - JOUR
AU - Olfati, Alireza
TI - On atomic ideals in some factor rings of $C(X,\mathbb {Z})$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 2
SP - 259
EP - 263
AB - A nonzero $R$-module $M$ is atomic if for each two nonzero elements $a, b$ in $M$, both cyclic submodules $Ra$ and $Rb$ have nonzero isomorphic submodules. In this article it is shown that for an infinite $P$-space $X$, the factor rings $C(X,\mathbb {Z})/C_F(X,\mathbb {Z})$ and $C_c(X)/C_F(X)$ have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set $X$, the factor ring $\mathbb {Z}^X/ \mathbb {Z}^{(X)}$ has no atomic ideal. Another result is that for each infinite $P$-space $X$, the socle of the factor ring $C_c(X)/C_F(X)$ is always equal to zero. Also, zero-dimensional spaces $X$ are characterized for which $C^F(X,\mathbb {Z})/C_F(X,\mathbb {Z})$ have atomic ideals.
LA - eng
KW - $P$-space; rings of integer-valued continuous functions; functionally countable subalgebra; atomic ideal; socle
UR - http://eudml.org/doc/297939
ER -
References
top- Alling N. L., 10.1090/S0002-9947-1965-0184960-6, Trans. Amer. Math. Soc. 118 (1965), 498–525. MR0184960DOI10.1090/S0002-9947-1965-0184960-6
- Azarpanah F., Karamzadeh O. A. S., Keshtkar Z., Olfati A. R., 10.1216/RMJ-2018-48-2-345, Rocky Mountain J. Math. 48 (2018), no. 2, 345–384. MR3809150DOI10.1216/RMJ-2018-48-2-345
- Azarpanah F., Karamzadeh O. A. S., Rahmati S., 10.4064/cm111-2-9, Colloq. Math. 111 (2008), no. 2, 315–336. MR2365803DOI10.4064/cm111-2-9
- Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Mathematics, 43, Springer, New York, 1976. Zbl0327.46040MR0407579
- Karamzadeh O. A. S., Rostami M., On the intrinsic topology and some related ideals of , Proc. Amer. Math. Soc. 93 (1985), no. 1, 179–184. Zbl0524.54013MR0766552
- Martinez J., 10.1006/aima.1993.1022, Adv. Math. 99 (1993), no. 2, 152–161. MR1219582DOI10.1006/aima.1993.1022
- Momtahan E., Motamedi M., A study on dimensions of modules, Bull. Iranian. Math. Soc. 43 (2017), no. 5, 1227–1235. MR3730636
- Mozaffarikhah A., Momtahan E., Olfati A. R., Safaeeyan S., 10.1142/S0219498820500784, J. Algebra Appl. 19 (2020), no. 4, 2050078, 22 pages. MR4098942DOI10.1142/S0219498820500784
- Olfati A. R., 10.1007/s00012-018-0509-9, Algebra Universalis 79 (2018), no. 2, Paper No. 34, 26 pages. MR3788813DOI10.1007/s00012-018-0509-9
- Pierce R. S., 10.1090/S0002-9947-1961-0131438-8, Trans. Amer. Math. Soc. 100 (1961), 371–394. Zbl0196.15401MR0131438DOI10.1090/S0002-9947-1961-0131438-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.