On atomic ideals in some factor rings of

Alireza Olfati

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Issue: 2, page 259-263
  • ISSN: 0010-2628

Abstract

top
A nonzero -module is atomic if for each two nonzero elements in , both cyclic submodules and have nonzero isomorphic submodules. In this article it is shown that for an infinite -space , the factor rings and have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set , the factor ring has no atomic ideal. Another result is that for each infinite -space , the socle of the factor ring is always equal to zero. Also, zero-dimensional spaces are characterized for which have atomic ideals.

How to cite

top

Olfati, Alireza. "On atomic ideals in some factor rings of $C(X,\mathbb {Z})$." Commentationes Mathematicae Universitatis Carolinae (2021): 259-263. <http://eudml.org/doc/297939>.

@article{Olfati2021,
abstract = {A nonzero $R$-module $M$ is atomic if for each two nonzero elements $a, b$ in $M$, both cyclic submodules $Ra$ and $Rb$ have nonzero isomorphic submodules. In this article it is shown that for an infinite $P$-space $X$, the factor rings $C(X,\mathbb \{Z\})/C_F(X,\mathbb \{Z\})$ and $C_c(X)/C_F(X)$ have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set $X$, the factor ring $\mathbb \{Z\}^X/ \mathbb \{Z\}^\{(X)\}$ has no atomic ideal. Another result is that for each infinite $P$-space $X$, the socle of the factor ring $C_c(X)/C_F(X)$ is always equal to zero. Also, zero-dimensional spaces $X$ are characterized for which $C^F(X,\mathbb \{Z\})/C_F(X,\mathbb \{Z\})$ have atomic ideals.},
author = {Olfati, Alireza},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$P$-space; rings of integer-valued continuous functions; functionally countable subalgebra; atomic ideal; socle},
language = {eng},
number = {2},
pages = {259-263},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On atomic ideals in some factor rings of $C(X,\mathbb \{Z\})$},
url = {http://eudml.org/doc/297939},
year = {2021},
}

TY - JOUR
AU - Olfati, Alireza
TI - On atomic ideals in some factor rings of $C(X,\mathbb {Z})$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 2
SP - 259
EP - 263
AB - A nonzero $R$-module $M$ is atomic if for each two nonzero elements $a, b$ in $M$, both cyclic submodules $Ra$ and $Rb$ have nonzero isomorphic submodules. In this article it is shown that for an infinite $P$-space $X$, the factor rings $C(X,\mathbb {Z})/C_F(X,\mathbb {Z})$ and $C_c(X)/C_F(X)$ have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set $X$, the factor ring $\mathbb {Z}^X/ \mathbb {Z}^{(X)}$ has no atomic ideal. Another result is that for each infinite $P$-space $X$, the socle of the factor ring $C_c(X)/C_F(X)$ is always equal to zero. Also, zero-dimensional spaces $X$ are characterized for which $C^F(X,\mathbb {Z})/C_F(X,\mathbb {Z})$ have atomic ideals.
LA - eng
KW - $P$-space; rings of integer-valued continuous functions; functionally countable subalgebra; atomic ideal; socle
UR - http://eudml.org/doc/297939
ER -

References

top
  1. Alling N. L., 10.1090/S0002-9947-1965-0184960-6, Trans. Amer. Math. Soc. 118 (1965), 498–525. MR0184960DOI10.1090/S0002-9947-1965-0184960-6
  2. Azarpanah F., Karamzadeh O. A. S., Keshtkar Z., Olfati A. R., 10.1216/RMJ-2018-48-2-345, Rocky Mountain J. Math. 48 (2018), no. 2, 345–384. MR3809150DOI10.1216/RMJ-2018-48-2-345
  3. Azarpanah F., Karamzadeh O. A. S., Rahmati S., 10.4064/cm111-2-9, Colloq. Math. 111 (2008), no. 2, 315–336. MR2365803DOI10.4064/cm111-2-9
  4. Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Mathematics, 43, Springer, New York, 1976. Zbl0327.46040MR0407579
  5. Karamzadeh O. A. S., Rostami M., On the intrinsic topology and some related ideals of , Proc. Amer. Math. Soc. 93 (1985), no. 1, 179–184. Zbl0524.54013MR0766552
  6. Martinez J., 10.1006/aima.1993.1022, Adv. Math. 99 (1993), no. 2, 152–161. MR1219582DOI10.1006/aima.1993.1022
  7. Momtahan E., Motamedi M., A study on dimensions of modules, Bull. Iranian. Math. Soc. 43 (2017), no. 5, 1227–1235. MR3730636
  8. Mozaffarikhah A., Momtahan E., Olfati A. R., Safaeeyan S., 10.1142/S0219498820500784, J. Algebra Appl. 19 (2020), no. 4, 2050078, 22 pages. MR4098942DOI10.1142/S0219498820500784
  9. Olfati A. R., 10.1007/s00012-018-0509-9, Algebra Universalis 79 (2018), no. 2, Paper No. 34, 26 pages. MR3788813DOI10.1007/s00012-018-0509-9
  10. Pierce R. S., 10.1090/S0002-9947-1961-0131438-8, Trans. Amer. Math. Soc. 100 (1961), 371–394. Zbl0196.15401MR0131438DOI10.1090/S0002-9947-1961-0131438-8

NotesEmbed ?

top

You must be logged in to post comments.