Rota-type operators on 3-dimensional nilpotent associative algebras

N.G. Abdujabborov; I.A. Karimjanov and M.A. Kodirova

Communications in Mathematics (2021)

  • Volume: 29, Issue: 2, page 227-241
  • ISSN: 1804-1388

Abstract

top
We give the description of Rota–Baxter operators, Reynolds operators, Nijenhuis operators and average operators on 3-dimensional nilpotent associative algebras over .

How to cite

top

Abdujabborov, N.G., and Kodirova, I.A. Karimjanov and M.A.. "Rota-type operators on 3-dimensional nilpotent associative algebras." Communications in Mathematics 29.2 (2021): 227-241. <http://eudml.org/doc/297960>.

@article{Abdujabborov2021,
abstract = {We give the description of Rota–Baxter operators, Reynolds operators, Nijenhuis operators and average operators on 3-dimensional nilpotent associative algebras over $\mathbb \{C\}$.},
author = {Abdujabborov, N.G., Kodirova, I.A. Karimjanov and M.A.},
journal = {Communications in Mathematics},
keywords = {Rota-Baxter operator; Reynolds operator; Nijenhuis operator; average operator; nilpotent; associative algebras},
language = {eng},
number = {2},
pages = {227-241},
publisher = {University of Ostrava},
title = {Rota-type operators on 3-dimensional nilpotent associative algebras},
url = {http://eudml.org/doc/297960},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Abdujabborov, N.G.
AU - Kodirova, I.A. Karimjanov and M.A.
TI - Rota-type operators on 3-dimensional nilpotent associative algebras
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 227
EP - 241
AB - We give the description of Rota–Baxter operators, Reynolds operators, Nijenhuis operators and average operators on 3-dimensional nilpotent associative algebras over $\mathbb {C}$.
LA - eng
KW - Rota-Baxter operator; Reynolds operator; Nijenhuis operator; average operator; nilpotent; associative algebras
UR - http://eudml.org/doc/297960
ER -

References

top
  1. Bai, R., Guo, L., Li, J., Wu, Y., Rota-Baxter 3-Lie algebras, J. Math. Phys., 54, 6, 2013, 063504, (2013) 
  2. Baxter, G., 10.2140/pjm.1960.10.731, Pac. J. Math., 10, 1960, 731-742, (1960) DOI10.2140/pjm.1960.10.731
  3. Belavin, A.A., Drinfel'd, V.G., 10.1007/BF01081585, Funct. Anal. its Appl., 16, 3, 1982, 159-180, (1982) DOI10.1007/BF01081585
  4. Benito, P., Gubarev, V., Pozhidaev, A., 10.1007/s00009-018-1234-5, Mediterr. J. Math, 15, 2018, 1-23, (2018) DOI10.1007/s00009-018-1234-5
  5. Chengand, Y., Su, Y., 10.1142/S1005386713000266, Algebra Colloq., 20, 2, 2013, 299-308, (2013) DOI10.1142/S1005386713000266
  6. Graaf, W.A. De, 10.1142/S0218196718500078, Int. J. Algebra Comput., 28, 1, 2018, 133-161, (2018) DOI10.1142/S0218196718500078
  7. Ebrahimi-Fard, K., 10.1023/A:1020712215075, Lett. Math. Phys., 61, 2, 2002, 139-147, (2002) DOI10.1023/A:1020712215075
  8. Gao, X., Liu, M., Bai, C, Jing, N., 10.1016/j.geomphys.2016.06.007, J. Geom. Phys., 108, 2016, 1-20, (2016) DOI10.1016/j.geomphys.2016.06.007
  9. Guo, L., An Introdction to Rota-Baxter Algebra, 2012, International Press, Beijing, China, (2012) 
  10. Guo, L., Keigher, W., 10.1006/aima.1999.1858, Adv. Math., 150, 1, 2000, 117-149, (2000) DOI10.1006/aima.1999.1858
  11. Guo, L., Liu, Z., Rota-Baxter operators on generalized power series rings, J. Algebra Its Appl., 8, 4, 2009, 557-564, (2009) 
  12. Hazlett, O.C., 10.2307/2370262, Am. J. Math., 38, 2, 1916, 109-138, (1916) DOI10.2307/2370262
  13. Karimjanov, I., Kaygorodov, I., Ladra, M., 10.1080/03081087.2018.1501331, Linear and Multilinear algebra, 68, 1, 2020, 205-219, (2020) DOI10.1080/03081087.2018.1501331
  14. Kruse, R.L., Price, D.T., Nilpotent Rings, 1969, Gordon and Breach Science Publishers, New York, (1969) 
  15. Makhlouf, A., Yau, D., 10.1080/00927872.2012.737075, Communications in Algebra, 42, 3, 2014, 1231-1257, (2014) DOI10.1080/00927872.2012.737075
  16. Mazurek, R., 10.1142/S0219498814500480, J. Algebra Its Appl., 13, 7, 2014, 1450048, (2014) DOI10.1142/S0219498814500480
  17. Mazzolla, G., 10.1007/BF01297739, Manuscr. Math., 27, 1, 1979, 81-101, (1979) DOI10.1007/BF01297739
  18. Mazzolla, G., 10.1007/BF02566686, Comment. Math. Helv., 55, 2, 1980, 267-293, (1980) DOI10.1007/BF02566686
  19. Pan, Y., Liu, Q., Bai, C., Guo, L., Post Lie algebra structures on the Lie algebra s l ( 2 , ) , Electron. J. Linear Algebra, 23, 2012, 180-197, (2012) 
  20. Pei, J., Bai, C., Guo, L., 10.1063/1.4863898, J. Math. Phys., 55, 2, 2014, 021701, (2014) DOI10.1063/1.4863898
  21. Tang, X., Zhang, Y., Sun., and Q., Rota-Baxter operators on 4-dimensional complex simple associative algebras, Appl. Math. Comput., 229, 2014, 173-186, (2014) 
  22. Yu, H., 10.1142/S0219498816500870, J. Algebra Its Appl., 15, 5, 2016, 1650087, (2016) DOI10.1142/S0219498816500870
  23. Zheng, S., Guo, L., Rosenkranz, M., 10.2140/pjm.2015.275.481, Pac. J. Math., 275, 2, 2015, 481-507, (2015) DOI10.2140/pjm.2015.275.481

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.