The periodic problem for the second order integro-differential equations with distributed deviation
Sulkhan Mukhigulashvili; Veronika Novotná
Mathematica Bohemica (2021)
- Volume: 146, Issue: 2, page 167-183
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMukhigulashvili, Sulkhan, and Novotná, Veronika. "The periodic problem for the second order integro-differential equations with distributed deviation." Mathematica Bohemica 146.2 (2021): 167-183. <http://eudml.org/doc/297964>.
@article{Mukhigulashvili2021,
abstract = {We study the question of the unique solvability of the periodic type problem for the second order linear integro-differential equation with distributed argument deviation \[ u^\{\prime \prime \}(t)=p\_0(t)u(t)+\int \_\{0\}^\{\omega \}p(t,s)u(\tau (t,s)) \{\rm d\}s+ q(t), \]
and on the basis of the obtained results by the a priori boundedness principle we prove the new results on the solvability of periodic type problem for the second order nonlinear functional differential equations, which are close to the linear integro-differential equations. The proved results are optimal in some sense.},
author = {Mukhigulashvili, Sulkhan, Novotná, Veronika},
journal = {Mathematica Bohemica},
keywords = {linear integro-differential equation; periodic problem; distributed deviation; solvability},
language = {eng},
number = {2},
pages = {167-183},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The periodic problem for the second order integro-differential equations with distributed deviation},
url = {http://eudml.org/doc/297964},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Mukhigulashvili, Sulkhan
AU - Novotná, Veronika
TI - The periodic problem for the second order integro-differential equations with distributed deviation
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 167
EP - 183
AB - We study the question of the unique solvability of the periodic type problem for the second order linear integro-differential equation with distributed argument deviation \[ u^{\prime \prime }(t)=p_0(t)u(t)+\int _{0}^{\omega }p(t,s)u(\tau (t,s)) {\rm d}s+ q(t), \]
and on the basis of the obtained results by the a priori boundedness principle we prove the new results on the solvability of periodic type problem for the second order nonlinear functional differential equations, which are close to the linear integro-differential equations. The proved results are optimal in some sense.
LA - eng
KW - linear integro-differential equation; periodic problem; distributed deviation; solvability
UR - http://eudml.org/doc/297964
ER -
References
top- Bravyi, E., 10.14232/ejqtde.2016.1.5, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 5, 18 pages. (2016) Zbl1363.34211MR3462810DOI10.14232/ejqtde.2016.1.5
- Bravyi, E. I., 10.1134/S001226611206002X, Differ. Equ. 48 (2012), 779-786 Translation from Differ. Uravn. 48 2012 773-780. (2012) Zbl1259.34052MR3180094DOI10.1134/S001226611206002X
- Chiu, K.-S., 10.1155/2014/514854, Sci. World J. 2014 (2014), Article ID 514854, 14 pages. (2014) DOI10.1155/2014/514854
- Erbe, L. H., Guo, D., 10.1080/00036819208840124, Appl. Anal. 46 (1992), 249-258. (1992) Zbl0799.45007MR1167708DOI10.1080/00036819208840124
- Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). (1988) Zbl0634.26008MR0944909
- Hu, S., Lakshmikantham, V., 10.1080/00036818608839591, Appl. Anal. 21 (1986), 199-205. (1986) Zbl0569.45011MR0840312DOI10.1080/00036818608839591
- Kiguradze, I. T., 10.1007/BF01100360, J. Sov. Math. 43 (1988), 2259-2339 Translated from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 1987 3-103. (1988) Zbl0782.34025MR0925829DOI10.1007/BF01100360
- Kiguradze, I., Půža, B., On boundary value problems for functional-differential equations, Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. (1997) Zbl0909.34054MR1636865
- Mukhigulashvili, S., Partsvania, N., Půža, B., 10.1016/j.na.2011.02.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 3232-3241. (2011) Zbl1225.34073MR2793558DOI10.1016/j.na.2011.02.002
- Nieto, J., 10.1155/S0161171295000974, Int. J. Math. Math. Sci. 18 (1995), 757-764. (1995) Zbl0837.45006MR1347066DOI10.1155/S0161171295000974
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.