Generalized divisor problem for new forms of higher level
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 259-263
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKrishnamoorthy, Krishnarjun. "Generalized divisor problem for new forms of higher level." Czechoslovak Mathematical Journal 72.1 (2022): 259-263. <http://eudml.org/doc/297968>.
@article{Krishnamoorthy2022,
abstract = {Suppose that $f$ is a primitive Hecke eigenform or a Mass cusp form for $\Gamma _0(N)$ with normalized eigenvalues $\lambda _f(n)$ and let $X>1$ be a real number. We consider the sum \[ \mathcal \{S\}\_k(X): = \sum \_\{n<X\} \sum \_\{n=n\_1,n\_2,\ldots ,n\_k\} \lambda \_f(n\_1)\lambda \_f(n\_2)\ldots \lambda \_f(n\_k) \]
and show that $\mathcal \{S\}_k(X) \ll _\{f,\epsilon \} X^\{1-3/(2(k+3))+\epsilon \}$ for every $k\ge 1$ and $\epsilon >0$. The same problem was considered for the case $N=1$, that is for the full modular group in Lü (2012) and Kanemitsu et al. (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for $k\ge 5$. Since the result is valid for arbitrary level, we obtain, as a corollary, estimates on sums of the form $\mathcal \{S\}_k(X)$, where the sum involves restricted coefficients of some suitable half integral weight modular forms.},
author = {Krishnamoorthy, Krishnarjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized divisor problem; cusp form of higher level},
language = {eng},
number = {1},
pages = {259-263},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized divisor problem for new forms of higher level},
url = {http://eudml.org/doc/297968},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Krishnamoorthy, Krishnarjun
TI - Generalized divisor problem for new forms of higher level
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 259
EP - 263
AB - Suppose that $f$ is a primitive Hecke eigenform or a Mass cusp form for $\Gamma _0(N)$ with normalized eigenvalues $\lambda _f(n)$ and let $X>1$ be a real number. We consider the sum \[ \mathcal {S}_k(X): = \sum _{n<X} \sum _{n=n_1,n_2,\ldots ,n_k} \lambda _f(n_1)\lambda _f(n_2)\ldots \lambda _f(n_k) \]
and show that $\mathcal {S}_k(X) \ll _{f,\epsilon } X^{1-3/(2(k+3))+\epsilon }$ for every $k\ge 1$ and $\epsilon >0$. The same problem was considered for the case $N=1$, that is for the full modular group in Lü (2012) and Kanemitsu et al. (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for $k\ge 5$. Since the result is valid for arbitrary level, we obtain, as a corollary, estimates on sums of the form $\mathcal {S}_k(X)$, where the sum involves restricted coefficients of some suitable half integral weight modular forms.
LA - eng
KW - generalized divisor problem; cusp form of higher level
UR - http://eudml.org/doc/297968
ER -
References
top- Aggarwal, K., 10.1016/j.jnt.2019.07.018, J. Number Theory 208 (2020), 72-100. (2020) Zbl1446.11092MR4032289DOI10.1016/j.jnt.2019.07.018
- Booker, A. R., Milinovich, M. B., Ng, N., 10.1016/j.aim.2018.10.037, Adv. Math. 341 (2019), 299-335. (2019) Zbl06988563MR3872849DOI10.1016/j.aim.2018.10.037
- Fomenko, O. M., 10.1007/s10958-012-0899-8, J. Math. Sci., New York 184 (2012), 776-785. (2012) Zbl1266.11070MR2870227DOI10.1007/s10958-012-0899-8
- Good, A., 10.1112/S0025579300012377, Mathematika 29 (1982), 278-295. (1982) Zbl0497.10016MR0696884DOI10.1112/S0025579300012377
- Iwaniec, H., Kowalski, E., 10.1090/coll/053, Colloquium Publications 53. American Mathematical Society, Providence (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
- Kanemitsu, S., Sankaranarayanan, A., Tanigawa, Y., 10.1007/s006050200031, Monatsh. Math. 136 (2002), 17-34. (2002) Zbl1022.11047MR1908078DOI10.1007/s006050200031
- Landau, E., Über die Anzahl der Gitterpunkte in gewissen Bereichen, Gött. Nachr. 1915 (1915), 209-243 German 9999JFM99999 45.0312.02. (1915)
- Lü, G., 10.1007/s10474-011-0150-y, Acta. Math. Hung. 135 (2012), 148-159. (2012) Zbl1265.11095MR2898795DOI10.1007/s10474-011-0150-y
- Munshi, R., Sub-Weyl bounds for -functions, Available at https://arxiv.org/abs/1806.07352 (2018), 30 pages. (2018)
- Shimura, G., 10.2307/1970831, Ann. Math. (2) 97 (1973), 440-481. (1973) Zbl0266.10022MR0332663DOI10.2307/1970831
- Zhang, W., 10.1007/s11139-019-00199-0, Ramanujan J. 53 (2020), 75-83. (2020) Zbl07343715MR4148459DOI10.1007/s11139-019-00199-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.