The local index density of the perturbed de Rham complex
Jesús Álvarez López; Peter B. Gilkey
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 901-932
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topÁlvarez López, Jesús, and Gilkey, Peter B.. "The local index density of the perturbed de Rham complex." Czechoslovak Mathematical Journal 71.3 (2021): 901-932. <http://eudml.org/doc/297970>.
@article{ÁlvarezLópez2021,
abstract = {A perturbation of the de Rham complex was introduced by Witten for an exact 1-form $\Theta $ and later extended by Novikov for a closed 1-form on a Riemannian manifold $M$. We use invariance theory to show that the perturbed index density is independent of $\Theta $; this result was established previously by J. A. Álvarez López, Y. A. Kordyukov and E. Leichtnam (2020) using other methods. We also show the higher order heat trace asymptotics of the perturbed de Rham complex exhibit nontrivial dependence on $\Theta $. We establish similar results for manifolds with boundary imposing suitable boundary conditions and give an equivariant version for the local Lefschetz trace density. In the setting of the Dolbeault complex, one requires $\Theta $ to be a $\bar\{\partial \}$ closed $1$-form to define a local index density; we show in contrast to the de Rham complex, that this exhibits a nontrivial dependence on $\Theta $ even in the setting of Riemann surfaces.},
author = {Álvarez López, Jesús, Gilkey, Peter B.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Witten deformation; local index density; de Rham complex; Dolbeault complex; equivariant index density},
language = {eng},
number = {3},
pages = {901-932},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The local index density of the perturbed de Rham complex},
url = {http://eudml.org/doc/297970},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Álvarez López, Jesús
AU - Gilkey, Peter B.
TI - The local index density of the perturbed de Rham complex
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 901
EP - 932
AB - A perturbation of the de Rham complex was introduced by Witten for an exact 1-form $\Theta $ and later extended by Novikov for a closed 1-form on a Riemannian manifold $M$. We use invariance theory to show that the perturbed index density is independent of $\Theta $; this result was established previously by J. A. Álvarez López, Y. A. Kordyukov and E. Leichtnam (2020) using other methods. We also show the higher order heat trace asymptotics of the perturbed de Rham complex exhibit nontrivial dependence on $\Theta $. We establish similar results for manifolds with boundary imposing suitable boundary conditions and give an equivariant version for the local Lefschetz trace density. In the setting of the Dolbeault complex, one requires $\Theta $ to be a $\bar{\partial }$ closed $1$-form to define a local index density; we show in contrast to the de Rham complex, that this exhibits a nontrivial dependence on $\Theta $ even in the setting of Riemann surfaces.
LA - eng
KW - Witten deformation; local index density; de Rham complex; Dolbeault complex; equivariant index density
UR - http://eudml.org/doc/297970
ER -
References
top- López, J. A. Álvarez, Kordyukov, Y. A., Leichtnam, E., A trace formula for foliated flow (working paper), Summer Conference on Topology and Its Applications 20 University of Dayton, Dayton (2017), 72 pages.
- Atiyah, M., Bott, R., Patodi, V. K., 10.1007/BF01425417, Invent. Math. 13 (1973), 279-330 errata ibid. 28 1975 277-280. (1973) Zbl0257.58008MR650828DOI10.1007/BF01425417
- Atiyah, M., Patodi, V. K., Singer, I. M., 10.1112/blms/5.2.229, Bull. Lond. Math. Soc. 5 (1973), 229-234. (1973) Zbl0268.58010MR331443DOI10.1112/blms/5.2.229
- Berline, N., Getzler, E., Vergne, M., 10.1007/978-3-642-58088-8, Grundlehren Text Editions. Springer, Berlin (2004). (2004) Zbl1037.58015MR2273508DOI10.1007/978-3-642-58088-8
- Bismut, J.-M., Zhang, W., An Extension of a Theorem by Cheeger and Müller, Astérisque 205. Société Mathématique de France, Paris (1992). (1992) Zbl0781.58039MR1185803
- Braverman, M., Farber, M., 10.1017/S0305004197001734, Math. Proc. Camb. Philos. Soc. 122 (1997), 357-375. (1997) Zbl0894.58012MR1458239DOI10.1017/S0305004197001734
- Burghelea, D., Haller, S., On the topology and analysis of a closed one form. I. (Novikov's theory revisited), Essays on Geometry and Related Topics. Volume 1 Monographs of L'Enseignement Mathématique 38. Enseignement Mathématique, Geneva (2001), 133-175. (2001) Zbl1017.57013MR1929325
- Burghelea, D., Haller, S., 10.1112/jtopol/jtm005, J. Topol. 1 (2008), 115-151. (2008) Zbl1156.57022MR2365654DOI10.1112/jtopol/jtm005
- Chern, S.-S., 10.2307/1969302, Ann. Math. (2) 45 (1944), 741-752. (1944) Zbl0060.38103MR11027DOI10.2307/1969302
- Gilkey, P. B., 10.1016/0001-8708(73)90014-5, Adv. Math. 11 (1973), 311-325. (1973) Zbl0285.53044MR334290DOI10.1016/0001-8708(73)90014-5
- Gilkey, P. B., 10.1016/0001-8708(73)90119-9, Adv. Math. 10 (1973), 344-382. (1973) Zbl0259.58010MR324731DOI10.1016/0001-8708(73)90119-9
- Gilkey, P. B., 10.1016/0001-8708(75)90141-3, Adv. Math. 15 (1975), 334-360. (1975) Zbl0306.53042MR368084DOI10.1016/0001-8708(75)90141-3
- Gilkey, P. B., Lefschetz fixed point formulas and the heat equation, Partial Differential Equations and Geometry Lecture Notes in Pure and Applied Mathematics 48. Marcel Dekker, New York (1979), 91-147. (1979) Zbl0405.58044MR535591
- Gilkey, P. B., Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). (1995) Zbl0856.58001MR1396308
- Gilkey, P. B., 10.1201/9780203490464, Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004). (2004) Zbl1080.58023MR2040963DOI10.1201/9780203490464
- Gilkey, P. B., Nikčević, S., Pohjanpelto, J., 10.2140/pjm.1997.180.51, Pac. J. Math. 180 (1997), 51-56. (1997) Zbl0885.58091MR1474893DOI10.2140/pjm.1997.180.51
- Gilkey, P. B., Park, J. H., Sekigawa, K., 10.1016/j.difgeo.2011.08.005, Differ. Geom. Appl. 29 (2011), 770-778. (2011) Zbl1259.53013MR2846274DOI10.1016/j.difgeo.2011.08.005
- Greiner, P., 10.1007/BF00276190, Arch. Ration. Mech. Anal. 41 (1971), 163-218. (1971) Zbl0238.35038MR331441DOI10.1007/BF00276190
- Harvey, F. R., Minervini, G., 10.1007/s00208-006-0765-4, Math. Ann. 335 (2006), 787-818. (2006) Zbl1109.57019MR2232017DOI10.1007/s00208-006-0765-4
- Helffer, B., Sjöstrand, J., 10.1080/03605308508820379, Commun. Partial Differ. Equations 10 (1985), 245-340 French. (1985) Zbl0597.35024MR780068DOI10.1080/03605308508820379
- Hirzebruch, F., 10.1007/978-3-642-62018-8, Die Grundlehren der Mathematischen Wissenschaften 131. Springer, Berlin (1966). (1966) Zbl0138.42001MR0202713DOI10.1007/978-3-642-62018-8
- Lee, S.-C., A Lefschetz Formula for Higher Dimensional Fixed Point Sets: Ph.D. Thesis, Brandeis University, Waltham (1976). (1976) MR2625269
- H. P. McKean, Jr., I. M. Singer, 10.4310/jdg/1214427880, J. Differ. Geom. 1 (1967), 43-69. (1967) Zbl0198.44301MR217739DOI10.4310/jdg/1214427880
- Minervini, G., A current approach to Morse and Novikov theories, Rend. Mat. Appl., VII. Ser. 36 (2015), 95-195. (2015) Zbl1361.58007MR3533253
- Novikov, S. P., Multivalued functions and functionals: An analogue of the Morse theory, Sov. Math., Dokl. 24 (1981), 222-226. (1981) Zbl0505.58011MR630459
- Novikov, S. P., 10.1070/RM1982v037n05ABEH004020, Russ. Math. Surv. 37 (1982), 1-56. (1982) Zbl0571.58011MR676612DOI10.1070/RM1982v037n05ABEH004020
- Novikov, S. P., Bloch homology. Critical points of functions and closed 1-forms, Sov. Math., Dokl. 33 (1986), 551-555. (1986) Zbl0642.58016MR838822
- Patodi, V. K., 10.4310/jdg/1214429991, J. Differ. Geom. 5 (1971), 251-283. (1971) Zbl0219.53054MR290318DOI10.4310/jdg/1214429991
- Patodi, V. K., 10.4310/jdg/1214429791, J. Differ. Geom. 5 (1971), 233-249. (1971) Zbl0211.53901MR292114DOI10.4310/jdg/1214429791
- Pazhitnov, A. V., An analytic proof of the real part of Novikov's inequalities, Sov. Math., Dokl. 35 (1987), 456-457. (1987) Zbl0647.57025MR891557
- Seeley, R. T., 10.1090/pspum/010, Singular Integrals Proceedings of Symposia in Pure Mathematics 10. American Mathematical Society, Providence (1968), 288-307. (1968) Zbl0159.15504MR0237943DOI10.1090/pspum/010
- Seeley, R. T., 10.2307/2373309, Am. J. Math. 91 (1969), 889-920. (1969) Zbl0191.11801MR265764DOI10.2307/2373309
- Weyl, H., 10.1515/9781400883905, Princeton Mathematical Series 1. Princeton University Press, Princeton (1946). (1946) Zbl1024.20502MR1488158DOI10.1515/9781400883905
- Witten, E., 10.4310/jdg/1214437492, J. Differ. Geom. 17 (1982), 661-692. (1982) Zbl0499.53056MR683171DOI10.4310/jdg/1214437492
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.