The local index density of the perturbed de Rham complex
Jesús Álvarez López; Peter B. Gilkey
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 901-932
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- López, J. A. Álvarez, Kordyukov, Y. A., Leichtnam, E., A trace formula for foliated flow (working paper), Summer Conference on Topology and Its Applications 20 University of Dayton, Dayton (2017), 72 pages.
- Atiyah, M., Bott, R., Patodi, V. K., 10.1007/BF01425417, Invent. Math. 13 (1973), 279-330 errata ibid. 28 1975 277-280. (1973) Zbl0257.58008MR650828DOI10.1007/BF01425417
- Atiyah, M., Patodi, V. K., Singer, I. M., 10.1112/blms/5.2.229, Bull. Lond. Math. Soc. 5 (1973), 229-234. (1973) Zbl0268.58010MR331443DOI10.1112/blms/5.2.229
- Berline, N., Getzler, E., Vergne, M., 10.1007/978-3-642-58088-8, Grundlehren Text Editions. Springer, Berlin (2004). (2004) Zbl1037.58015MR2273508DOI10.1007/978-3-642-58088-8
- Bismut, J.-M., Zhang, W., An Extension of a Theorem by Cheeger and Müller, Astérisque 205. Société Mathématique de France, Paris (1992). (1992) Zbl0781.58039MR1185803
- Braverman, M., Farber, M., 10.1017/S0305004197001734, Math. Proc. Camb. Philos. Soc. 122 (1997), 357-375. (1997) Zbl0894.58012MR1458239DOI10.1017/S0305004197001734
- Burghelea, D., Haller, S., On the topology and analysis of a closed one form. I. (Novikov's theory revisited), Essays on Geometry and Related Topics. Volume 1 Monographs of L'Enseignement Mathématique 38. Enseignement Mathématique, Geneva (2001), 133-175. (2001) Zbl1017.57013MR1929325
- Burghelea, D., Haller, S., 10.1112/jtopol/jtm005, J. Topol. 1 (2008), 115-151. (2008) Zbl1156.57022MR2365654DOI10.1112/jtopol/jtm005
- Chern, S.-S., 10.2307/1969302, Ann. Math. (2) 45 (1944), 741-752. (1944) Zbl0060.38103MR11027DOI10.2307/1969302
- Gilkey, P. B., 10.1016/0001-8708(73)90014-5, Adv. Math. 11 (1973), 311-325. (1973) Zbl0285.53044MR334290DOI10.1016/0001-8708(73)90014-5
- Gilkey, P. B., 10.1016/0001-8708(73)90119-9, Adv. Math. 10 (1973), 344-382. (1973) Zbl0259.58010MR324731DOI10.1016/0001-8708(73)90119-9
- Gilkey, P. B., 10.1016/0001-8708(75)90141-3, Adv. Math. 15 (1975), 334-360. (1975) Zbl0306.53042MR368084DOI10.1016/0001-8708(75)90141-3
- Gilkey, P. B., Lefschetz fixed point formulas and the heat equation, Partial Differential Equations and Geometry Lecture Notes in Pure and Applied Mathematics 48. Marcel Dekker, New York (1979), 91-147. (1979) Zbl0405.58044MR535591
- Gilkey, P. B., Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). (1995) Zbl0856.58001MR1396308
- Gilkey, P. B., 10.1201/9780203490464, Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004). (2004) Zbl1080.58023MR2040963DOI10.1201/9780203490464
- Gilkey, P. B., Nikčević, S., Pohjanpelto, J., 10.2140/pjm.1997.180.51, Pac. J. Math. 180 (1997), 51-56. (1997) Zbl0885.58091MR1474893DOI10.2140/pjm.1997.180.51
- Gilkey, P. B., Park, J. H., Sekigawa, K., 10.1016/j.difgeo.2011.08.005, Differ. Geom. Appl. 29 (2011), 770-778. (2011) Zbl1259.53013MR2846274DOI10.1016/j.difgeo.2011.08.005
- Greiner, P., 10.1007/BF00276190, Arch. Ration. Mech. Anal. 41 (1971), 163-218. (1971) Zbl0238.35038MR331441DOI10.1007/BF00276190
- Harvey, F. R., Minervini, G., 10.1007/s00208-006-0765-4, Math. Ann. 335 (2006), 787-818. (2006) Zbl1109.57019MR2232017DOI10.1007/s00208-006-0765-4
- Helffer, B., Sjöstrand, J., 10.1080/03605308508820379, Commun. Partial Differ. Equations 10 (1985), 245-340 French. (1985) Zbl0597.35024MR780068DOI10.1080/03605308508820379
- Hirzebruch, F., 10.1007/978-3-642-62018-8, Die Grundlehren der Mathematischen Wissenschaften 131. Springer, Berlin (1966). (1966) Zbl0138.42001MR0202713DOI10.1007/978-3-642-62018-8
- Lee, S.-C., A Lefschetz Formula for Higher Dimensional Fixed Point Sets: Ph.D. Thesis, Brandeis University, Waltham (1976). (1976) MR2625269
- H. P. McKean, Jr., I. M. Singer, 10.4310/jdg/1214427880, J. Differ. Geom. 1 (1967), 43-69. (1967) Zbl0198.44301MR217739DOI10.4310/jdg/1214427880
- Minervini, G., A current approach to Morse and Novikov theories, Rend. Mat. Appl., VII. Ser. 36 (2015), 95-195. (2015) Zbl1361.58007MR3533253
- Novikov, S. P., Multivalued functions and functionals: An analogue of the Morse theory, Sov. Math., Dokl. 24 (1981), 222-226. (1981) Zbl0505.58011MR630459
- Novikov, S. P., 10.1070/RM1982v037n05ABEH004020, Russ. Math. Surv. 37 (1982), 1-56. (1982) Zbl0571.58011MR676612DOI10.1070/RM1982v037n05ABEH004020
- Novikov, S. P., Bloch homology. Critical points of functions and closed 1-forms, Sov. Math., Dokl. 33 (1986), 551-555. (1986) Zbl0642.58016MR838822
- Patodi, V. K., 10.4310/jdg/1214429991, J. Differ. Geom. 5 (1971), 251-283. (1971) Zbl0219.53054MR290318DOI10.4310/jdg/1214429991
- Patodi, V. K., 10.4310/jdg/1214429791, J. Differ. Geom. 5 (1971), 233-249. (1971) Zbl0211.53901MR292114DOI10.4310/jdg/1214429791
- Pazhitnov, A. V., An analytic proof of the real part of Novikov's inequalities, Sov. Math., Dokl. 35 (1987), 456-457. (1987) Zbl0647.57025MR891557
- Seeley, R. T., 10.1090/pspum/010, Singular Integrals Proceedings of Symposia in Pure Mathematics 10. American Mathematical Society, Providence (1968), 288-307. (1968) Zbl0159.15504MR0237943DOI10.1090/pspum/010
- Seeley, R. T., 10.2307/2373309, Am. J. Math. 91 (1969), 889-920. (1969) Zbl0191.11801MR265764DOI10.2307/2373309
- Weyl, H., 10.1515/9781400883905, Princeton Mathematical Series 1. Princeton University Press, Princeton (1946). (1946) Zbl1024.20502MR1488158DOI10.1515/9781400883905
- Witten, E., 10.4310/jdg/1214437492, J. Differ. Geom. 17 (1982), 661-692. (1982) Zbl0499.53056MR683171DOI10.4310/jdg/1214437492