Derived dimension via -tilting theory
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1167-1172
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Yingying. "Derived dimension via $\tau $-tilting theory." Czechoslovak Mathematical Journal 71.4 (2021): 1167-1172. <http://eudml.org/doc/297981>.
@article{Zhang2021,
abstract = {Comparing the bounded derived categories of an algebra and of the endomorphism algebra of a given support $\tau $-tilting module, we find a relation between the derived dimensions of an algebra and of the endomorphism algebra of a given $\tau $-tilting module.},
author = {Zhang, Yingying},
journal = {Czechoslovak Mathematical Journal},
keywords = {support $\tau $-tilting module; endomorphism algebra; derived dimension},
language = {eng},
number = {4},
pages = {1167-1172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Derived dimension via $\tau $-tilting theory},
url = {http://eudml.org/doc/297981},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Zhang, Yingying
TI - Derived dimension via $\tau $-tilting theory
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1167
EP - 1172
AB - Comparing the bounded derived categories of an algebra and of the endomorphism algebra of a given support $\tau $-tilting module, we find a relation between the derived dimensions of an algebra and of the endomorphism algebra of a given $\tau $-tilting module.
LA - eng
KW - support $\tau $-tilting module; endomorphism algebra; derived dimension
UR - http://eudml.org/doc/297981
ER -
References
top- Adachi, T., Iyama, O., Reiten, I., 10.1112/S0010437X13007422, Compos. Math. 150 (2014), 415-452. (2014) Zbl1330.16004MR3187626DOI10.1112/S0010437X13007422
- Hügel, L. Angeleri, Marks, F., Vitória, J., 10.1093/imrn/rnv191, Int. Math. Res. Not. 2016 (2016), 1251-1284. (2016) Zbl1367.16005MR3493448DOI10.1093/imrn/rnv191
- Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Bekkert, V., Merklen, H. A., 10.1023/a:1025142023594, Algebr. Represent. Theory 6 (2003), 285-302. (2003) Zbl1032.16011MR2000963DOI10.1023/a:1025142023594
- Burban, I., Drozd, Y., On the derived categories of gentle and skew-gentle algebra: Homological algebra and matrix problems, Available at https://arxiv.org/abs/1706.08358 (2017), 57 pages. (2017)
- Chen, X.-W., Ye, Y., Zhang, P., 10.1080/00927870701649184, Commun. Algebra 36 (2008), 1-10. (2008) Zbl1135.16012MR2378361DOI10.1080/00927870701649184
- Han, Y., Derived dimensions of representation-finite algebras, Available at https://arxiv.org/abs/0909.0330 (2009), 4 pages. (2009)
- Happel, D., 10.1007/BF02564452, Comment. Math. Helv. 62 (1987), 339-389. (1987) Zbl0626.16008MR0910167DOI10.1007/BF02564452
- Oppermann, S., 10.1215/00127094-2009-025, Duke Math. J. 148 (2009), 211-249. (2009) Zbl1173.16007MR2524495DOI10.1215/00127094-2009-025
- Rouquier, R., 10.1007/s00222-006-0499-7, Invent. Math. 165 (2006), 357-367. (2006) Zbl1101.18006MR2231960DOI10.1007/s00222-006-0499-7
- Rouquier, R., 10.1017/is007011012jkt010, J. -Theory 1 (2008), 193-256. (2008) Zbl1165.18008MR2434186DOI10.1017/is007011012jkt010
- Suarez, P., 10.1016/j.jpaa.2021.106740, J. Pure Appl. Algebra 225 (2021), 106740. (2021) MR4232685DOI10.1016/j.jpaa.2021.106740
- Treffinger, H., 10.1016/j.jalgebra.2017.03.004, J. Algebra 481 (2017), 362-392. (2017) Zbl1411.16012MR3639480DOI10.1016/j.jalgebra.2017.03.004
- Zheng, J., Huang, Z., 10.1016/j.jalgebra.2020.04.012, J. Algebra 556 (2020), 1211-1228. (2020) Zbl1440.18025MR4090423DOI10.1016/j.jalgebra.2020.04.012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.