Existence of nonoscillatory solutions to third order neutral type difference equations with delay and advanced arguments
Srinivasan Selvarangam; Sethurajan A. Rupadevi; Ethiraju Thandapani; Sandra Pinelas
Mathematica Bohemica (2021)
- Volume: 146, Issue: 3, page 263-278
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSelvarangam, Srinivasan, et al. "Existence of nonoscillatory solutions to third order neutral type difference equations with delay and advanced arguments." Mathematica Bohemica 146.3 (2021): 263-278. <http://eudml.org/doc/297989>.
@article{Selvarangam2021,
abstract = {In this paper, we present several sufficient conditions for the existence of nonoscillatory solutions to the following third order neutral type difference equation \[ \Delta ^3(x\_n+a\_n x\_\{n-l\} +b\_n x\_\{n+m\})+p\_n x\_\{n-k\} - q\_n x\_\{n+r\}=0,\quad n\ge n\_0 \]
via Banach contraction principle. Examples are provided to illustrate the main results. The results obtained in this paper extend and complement some of the existing results.},
author = {Selvarangam, Srinivasan, Rupadevi, Sethurajan A., Thandapani, Ethiraju, Pinelas, Sandra},
journal = {Mathematica Bohemica},
keywords = {third order; nonoscillation; delay and advanced arguments; neutral difference equation},
language = {eng},
number = {3},
pages = {263-278},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of nonoscillatory solutions to third order neutral type difference equations with delay and advanced arguments},
url = {http://eudml.org/doc/297989},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Selvarangam, Srinivasan
AU - Rupadevi, Sethurajan A.
AU - Thandapani, Ethiraju
AU - Pinelas, Sandra
TI - Existence of nonoscillatory solutions to third order neutral type difference equations with delay and advanced arguments
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 3
SP - 263
EP - 278
AB - In this paper, we present several sufficient conditions for the existence of nonoscillatory solutions to the following third order neutral type difference equation \[ \Delta ^3(x_n+a_n x_{n-l} +b_n x_{n+m})+p_n x_{n-k} - q_n x_{n+r}=0,\quad n\ge n_0 \]
via Banach contraction principle. Examples are provided to illustrate the main results. The results obtained in this paper extend and complement some of the existing results.
LA - eng
KW - third order; nonoscillation; delay and advanced arguments; neutral difference equation
UR - http://eudml.org/doc/297989
ER -
References
top- Agarwal, R. P., 10.1201/9781420027020, Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). (2000) Zbl0952.39001MR1740241DOI10.1201/9781420027020
- Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., 10.1155/9789775945198, Hindawi Publishing, New York (2005). (2005) Zbl1084.39001MR2179948DOI10.1155/9789775945198
- Agarwal, R. P., Grace, S. R., Akin-Bohner, E., On the oscillation of higher order neutral difference equations of mixed type, Dyn. Syst. Appl. 11 (2002), 459-469. (2002) Zbl1046.39001MR1946136
- Chen, M. P., Zhang, B. G., The existence of the bounded positive solutions of delay difference equations, Panam. Math. J. 3 (1993), 79-94. (1993) Zbl0847.39005MR1201542
- Lalli, B. S., Zhang, B. G., 10.1016/0022-247X(92)90342-B, J. Math. Anal. Appl. 166 (1992), 272-287. (1992) Zbl0763.39002MR1159653DOI10.1016/0022-247X(92)90342-B
- Lalli, B. S., Zhang, B. G., Li, J. Z., 10.1016/0022-247X(91)90278-8, J. Math. Anal. Appl. 158 (1991), 213-233. (1991) Zbl0732.39002MR1113411DOI10.1016/0022-247X(91)90278-8
- Li, Q., Liang, H., Dong, W., Zhang, Z., 10.4134/BKMS.2008.45.1.023, Bull. Korean Math. Soc. 45 (2008), 23-31. (2008) Zbl1161.39006MR2391449DOI10.4134/BKMS.2008.45.1.023
- Selvarangam, S., Geetha, S., Thandapani, E., 10.23952/jnfa.2017.2, J. Nonlinear Funct. Anal. 2017 (2017), Article ID 2, 17 pages. (2017) DOI10.23952/jnfa.2017.2
- Thandapani, E., Graef, J. R., Spikes, P. W., 10.1080/10236199608808052, J. Differnce Equ. Appl. 2 (1996), 175-183. (1996) Zbl0855.39013MR1384567DOI10.1080/10236199608808052
- Thandapani, E., Karunakaran, R., Arockiasamy, I. M., Existence results for nonoscillatory solutions of third order nonlinear neutral difference equations, Sarajevo J. Math. 5(17) (2009), 73-87. (2009) Zbl1183.39010MR2527150
- Thandapani, E., Kavitha, N., 10.1016/S0252-9602(12)60206-9, Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 218-226. (2013) Zbl1289.39025MR3003755DOI10.1016/S0252-9602(12)60206-9
- Thandapani, E., Selvarangam, S., Seghar, D., 10.14232/ejqtde.2014.1.53, Electron. J. Qual. Theory Differ. Equ. 2014 (2014), Article ID 53, 11 pages. (2014) Zbl1324.39015MR3282972DOI10.14232/ejqtde.2014.1.53
- Vidhyaa, K. S., Dharuman, C., Graef, J. R., Thandapani, E., 10.2298/FIL1814981V, Filomat 32 (2018), 4981-4991. (2018) MR3898546DOI10.2298/FIL1814981V
- Zhang, B., 10.1007/s10255-015-0480-6, Acta Math. Appl. Sin., Engl. Ser. 31 (2015), 467-474. (2015) Zbl1325.39009MR3357914DOI10.1007/s10255-015-0480-6
- Zhou, Y., 10.1016/S0893-9659(02)00043-5, Appl. Math. Lett. 15 (2002), 785-791. (2002) Zbl1029.39009MR1920976DOI10.1016/S0893-9659(02)00043-5
- Zhou, Y., Huang, Y. Q., 10.1016/S0022-247X(03)00017-9, J. Math. Anal. Appl. 280 (2003), 63-76 9999DOI99999 10.1016/S0022-247X(03)00017-9 . (2003) Zbl1036.39018MR1972192DOI10.1016/S0022-247X(03)00017-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.