Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
Ting Guo; Zhiming Feng; Enchao Bi
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 373-386
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Ting, Feng, Zhiming, and Bi, Enchao. "Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains." Czechoslovak Mathematical Journal 71.2 (2021): 373-386. <http://eudml.org/doc/298013>.
@article{Guo2021,
abstract = {We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_\{n,m\}^\{p\}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality $\{\rm e\}^\{\mu \Vert z\Vert ^\{2\}\}\sum _\{j=1\}^\{m\}|\omega _\{j\}|^\{2p\}<1$, where $(z,\omega )\in \mathbb \{C\}^n\times \mathbb \{C\}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_\{n,m\}^\{p\}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _\{j=1\}^\{m\}|\omega _\{j\}|^\{2p\}\{\rm e\}^\{\mu \Vert z\Vert ^\{2\}\}$ invariant.},
author = {Guo, Ting, Feng, Zhiming, Bi, Enchao},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group},
language = {eng},
number = {2},
pages = {373-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains},
url = {http://eudml.org/doc/298013},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Guo, Ting
AU - Feng, Zhiming
AU - Bi, Enchao
TI - Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 373
EP - 386
AB - We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \Vert z\Vert ^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}<1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \Vert z\Vert ^{2}}$ invariant.
LA - eng
KW - generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group
UR - http://eudml.org/doc/298013
ER -
References
top- Ahn, H., Byun, J., Park, J.-D., 10.1142/S0129167X1250098X, Int. J. Math. 23 (2012), Aticle ID 1250098, 11 pages. (2012) Zbl1248.32001MR2959444DOI10.1142/S0129167X1250098X
- Bi, E., Feng, Z., Tu, Z., 10.1007/s10455-016-9495-3, Ann. Global Anal. Geom. 49 (2016), 349-359. (2016) Zbl1355.32004MR3510521DOI10.1007/s10455-016-9495-3
- Bi, E., Tu, Z., 10.2140/pjm.2018.297.277, Pac. J. Math. 297 (2018), 277-297. (2018) Zbl1410.32001MR3893429DOI10.2140/pjm.2018.297.277
- Dini, G., Primicerio, A. Selvaggi, 10.1007/BF02921633, J. Geom. Anal. 7 (1997), 575-584. (1997) Zbl0943.32006MR1669231DOI10.1007/BF02921633
- Ishi, H., Kai, C., 10.2206/kyushujm.64.35, Kyushu J. Math. 64 (2010), 35-47. (2010) Zbl1195.32009MR2662658DOI10.2206/kyushujm.64.35
- Kim, H., Ninh, V. T., Yamamori, A., 10.1016/j.jmaa.2013.07.007, J. Math. Anal. Appl. 409 (2014), 637-642. (2014) Zbl1307.32017MR3103183DOI10.1016/j.jmaa.2013.07.007
- Kodama, A., 10.1080/17476933.2013.845177, Complex Var. Elliptic Equ. 59 (2014), 1342-1349. (2014) Zbl1300.32001MR3210305DOI10.1080/17476933.2013.845177
- Tu, Z.-H., 10.1090/S0002-9939-01-06383-3, Proc. Am. Math. Soc. 130 (2002), 1035-1042. (2002) Zbl0999.32007MR1873777DOI10.1090/S0002-9939-01-06383-3
- Tu, Z., Wang, L., 10.1016/j.jmaa.2014.04.073, J. Math. Anal. Appl. 419 (2014), 703-714. (2014) Zbl1293.32002MR3225398DOI10.1016/j.jmaa.2014.04.073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.