Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains

Ting Guo; Zhiming Feng; Enchao Bi

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 373-386
  • ISSN: 0011-4642

Abstract

top
We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain D n , m p ( μ ) . The generalized Fock-Bargmann-Hartogs domain is defined by inequality e μ z 2 j = 1 m | ω j | 2 p < 1 , where ( z , ω ) n × m . In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain D n , m p ( μ ) becomes a holomorphic automorphism if and only if it keeps the function j = 1 m | ω j | 2 p e μ z 2 invariant.

How to cite

top

Guo, Ting, Feng, Zhiming, and Bi, Enchao. "Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains." Czechoslovak Mathematical Journal 71.2 (2021): 373-386. <http://eudml.org/doc/298013>.

@article{Guo2021,
abstract = {We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_\{n,m\}^\{p\}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality $\{\rm e\}^\{\mu \Vert z\Vert ^\{2\}\}\sum _\{j=1\}^\{m\}|\omega _\{j\}|^\{2p\}<1$, where $(z,\omega )\in \mathbb \{C\}^n\times \mathbb \{C\}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_\{n,m\}^\{p\}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _\{j=1\}^\{m\}|\omega _\{j\}|^\{2p\}\{\rm e\}^\{\mu \Vert z\Vert ^\{2\}\}$ invariant.},
author = {Guo, Ting, Feng, Zhiming, Bi, Enchao},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group},
language = {eng},
number = {2},
pages = {373-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains},
url = {http://eudml.org/doc/298013},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Guo, Ting
AU - Feng, Zhiming
AU - Bi, Enchao
TI - Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 373
EP - 386
AB - We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \Vert z\Vert ^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}<1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \Vert z\Vert ^{2}}$ invariant.
LA - eng
KW - generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group
UR - http://eudml.org/doc/298013
ER -

References

top
  1. Ahn, H., Byun, J., Park, J.-D., 10.1142/S0129167X1250098X, Int. J. Math. 23 (2012), Aticle ID 1250098, 11 pages. (2012) Zbl1248.32001MR2959444DOI10.1142/S0129167X1250098X
  2. Bi, E., Feng, Z., Tu, Z., 10.1007/s10455-016-9495-3, Ann. Global Anal. Geom. 49 (2016), 349-359. (2016) Zbl1355.32004MR3510521DOI10.1007/s10455-016-9495-3
  3. Bi, E., Tu, Z., 10.2140/pjm.2018.297.277, Pac. J. Math. 297 (2018), 277-297. (2018) Zbl1410.32001MR3893429DOI10.2140/pjm.2018.297.277
  4. Dini, G., Primicerio, A. Selvaggi, 10.1007/BF02921633, J. Geom. Anal. 7 (1997), 575-584. (1997) Zbl0943.32006MR1669231DOI10.1007/BF02921633
  5. Ishi, H., Kai, C., 10.2206/kyushujm.64.35, Kyushu J. Math. 64 (2010), 35-47. (2010) Zbl1195.32009MR2662658DOI10.2206/kyushujm.64.35
  6. Kim, H., Ninh, V. T., Yamamori, A., 10.1016/j.jmaa.2013.07.007, J. Math. Anal. Appl. 409 (2014), 637-642. (2014) Zbl1307.32017MR3103183DOI10.1016/j.jmaa.2013.07.007
  7. Kodama, A., 10.1080/17476933.2013.845177, Complex Var. Elliptic Equ. 59 (2014), 1342-1349. (2014) Zbl1300.32001MR3210305DOI10.1080/17476933.2013.845177
  8. Tu, Z.-H., 10.1090/S0002-9939-01-06383-3, Proc. Am. Math. Soc. 130 (2002), 1035-1042. (2002) Zbl0999.32007MR1873777DOI10.1090/S0002-9939-01-06383-3
  9. Tu, Z., Wang, L., 10.1016/j.jmaa.2014.04.073, J. Math. Anal. Appl. 419 (2014), 703-714. (2014) Zbl1293.32002MR3225398DOI10.1016/j.jmaa.2014.04.073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.