On spectral problems of discrete Schrödinger operators

Chi-Hua Chan; Po-Chun Huang

Applications of Mathematics (2021)

  • Volume: 66, Issue: 3, page 325-344
  • ISSN: 0862-7940

Abstract

top
A special type of Jacobi matrices, discrete Schrödinger operators, is found to play an important role in quantum physics. In this paper, we show that given the spectrum of a discrete Schrödinger operator and the spectrum of the operator obtained by deleting the first row and the first column of it can determine the discrete Schrödinger operator uniquely, even though one eigenvalue of the latter is missing. Moreover, we find the forms of the discrete Schrödinger operators when their smallest and largest eigenvalues attain the extrema under certain constraints by use of the notion of generalized directional derivative and the method of Lagrange multiplier.

How to cite

top

Chan, Chi-Hua, and Huang, Po-Chun. "On spectral problems of discrete Schrödinger operators." Applications of Mathematics 66.3 (2021): 325-344. <http://eudml.org/doc/298036>.

@article{Chan2021,
abstract = {A special type of Jacobi matrices, discrete Schrödinger operators, is found to play an important role in quantum physics. In this paper, we show that given the spectrum of a discrete Schrödinger operator and the spectrum of the operator obtained by deleting the first row and the first column of it can determine the discrete Schrödinger operator uniquely, even though one eigenvalue of the latter is missing. Moreover, we find the forms of the discrete Schrödinger operators when their smallest and largest eigenvalues attain the extrema under certain constraints by use of the notion of generalized directional derivative and the method of Lagrange multiplier.},
author = {Chan, Chi-Hua, Huang, Po-Chun},
journal = {Applications of Mathematics},
keywords = {discrete Schrödinger operator},
language = {eng},
number = {3},
pages = {325-344},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On spectral problems of discrete Schrödinger operators},
url = {http://eudml.org/doc/298036},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Chan, Chi-Hua
AU - Huang, Po-Chun
TI - On spectral problems of discrete Schrödinger operators
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 325
EP - 344
AB - A special type of Jacobi matrices, discrete Schrödinger operators, is found to play an important role in quantum physics. In this paper, we show that given the spectrum of a discrete Schrödinger operator and the spectrum of the operator obtained by deleting the first row and the first column of it can determine the discrete Schrödinger operator uniquely, even though one eigenvalue of the latter is missing. Moreover, we find the forms of the discrete Schrödinger operators when their smallest and largest eigenvalues attain the extrema under certain constraints by use of the notion of generalized directional derivative and the method of Lagrange multiplier.
LA - eng
KW - discrete Schrödinger operator
UR - http://eudml.org/doc/298036
ER -

References

top
  1. Agranovich, Z. S., Marchenko, V. A., The Inverse Problem of Scattering Theory, Gordon and Breach, New York (1963). (1963) Zbl0117.06003MR0162497
  2. Anderson, P. W., 10.1103/PhysRev.109.1492, Phys. Rev. 109 (1958), 1492-1505. (1958) DOI10.1103/PhysRev.109.1492
  3. Astrauskas, A., 10.1007/s10955-012-0669-5, J. Stat. Phys. 150 (2013), 889-907. (2013) Zbl1266.82033MR3028390DOI10.1007/s10955-012-0669-5
  4. Borg, G., 10.1007/BF02421600, Acta Math. 78 (1946), 1-96 German. (1946) Zbl0063.00523MR0015185DOI10.1007/BF02421600
  5. Damanik, D., Hundertmark, D., Killip, R., Simon, B., 10.1007/s00220-003-0868-7, Commun. Math. Phys. 238 (2003), 545-562. (2003) Zbl1052.47027MR1993385DOI10.1007/s00220-003-0868-7
  6. Gel'fand, I. M., Levitan, B. M., 10.1090/trans2/001, Am. Math. Soc., Transl., II. Ser. 1 (1955), 253-304. (1955) Zbl0066.33603MR0073805DOI10.1090/trans2/001
  7. Gesztesy, F., Simon, B., 10.1007/BF02788147, J. Anal. Math. 73 (1997), 267-297. (1997) Zbl0924.15005MR1616422DOI10.1007/BF02788147
  8. Gladwell, G. M. L., 10.1007/978-94-015-1178-0, Mechanics: Dynamical Systems 9. Martinus Nijhoff Publishers, Dordrecht (1986). (1986) Zbl0646.73013MR0874749DOI10.1007/978-94-015-1178-0
  9. Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge University Press, Cambridge (1952). (1952) Zbl0047.05302MR0046395
  10. Hochstadt, H., 10.1007/BF01899647, Arch. Math. 18 (1967), 201-207. (1967) Zbl0147.27701MR0213379DOI10.1007/BF01899647
  11. Hochstadt, H., 10.1002/cpa.3160260514, Commun. Pure Appl. Math. 26 (1973), 715-729. (1973) Zbl0281.34015MR0330607DOI10.1002/cpa.3160260514
  12. Levinson, N., The inverse Sturm-Liouville problem, Mat. Tidsskr. B 1949 (1949), 25-30. (1949) Zbl0041.42310MR0032067
  13. Levitan, B. M., Inverse Sturm-Liouville Problem, VNU Science Press, Utrecht (1987). (1987) Zbl0749.34001MR0933088
  14. Levitan, B. M., Gasymov, M. G., 10.1070/RM1964v019n02ABEH001145, Russ. Math. Surv. 19 (1964), 1-63 translation from Usp. Mat. Nauk 19 1964 1-63. (1964) Zbl0145.10903MR0162996DOI10.1070/RM1964v019n02ABEH001145
  15. Pelinovsky, D. E., Stefanov, A., 10.1063/1.3005597, J. Math. Phys. 49 (2008), Article ID 113501, 17 pages. (2008) Zbl1159.81336MR2468536DOI10.1063/1.3005597
  16. Pöschel, J., Trubowitz, E., 10.1016/s0079-8169(08)x6138-0, Pure and Applied Mathematics 130. Academic Press, Boston (1987). (1987) Zbl0623.34001MR0894477DOI10.1016/s0079-8169(08)x6138-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.