On spectral problems of discrete Schrödinger operators
Applications of Mathematics (2021)
- Volume: 66, Issue: 3, page 325-344
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topChan, Chi-Hua, and Huang, Po-Chun. "On spectral problems of discrete Schrödinger operators." Applications of Mathematics 66.3 (2021): 325-344. <http://eudml.org/doc/298036>.
@article{Chan2021,
abstract = {A special type of Jacobi matrices, discrete Schrödinger operators, is found to play an important role in quantum physics. In this paper, we show that given the spectrum of a discrete Schrödinger operator and the spectrum of the operator obtained by deleting the first row and the first column of it can determine the discrete Schrödinger operator uniquely, even though one eigenvalue of the latter is missing. Moreover, we find the forms of the discrete Schrödinger operators when their smallest and largest eigenvalues attain the extrema under certain constraints by use of the notion of generalized directional derivative and the method of Lagrange multiplier.},
author = {Chan, Chi-Hua, Huang, Po-Chun},
journal = {Applications of Mathematics},
keywords = {discrete Schrödinger operator},
language = {eng},
number = {3},
pages = {325-344},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On spectral problems of discrete Schrödinger operators},
url = {http://eudml.org/doc/298036},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Chan, Chi-Hua
AU - Huang, Po-Chun
TI - On spectral problems of discrete Schrödinger operators
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 325
EP - 344
AB - A special type of Jacobi matrices, discrete Schrödinger operators, is found to play an important role in quantum physics. In this paper, we show that given the spectrum of a discrete Schrödinger operator and the spectrum of the operator obtained by deleting the first row and the first column of it can determine the discrete Schrödinger operator uniquely, even though one eigenvalue of the latter is missing. Moreover, we find the forms of the discrete Schrödinger operators when their smallest and largest eigenvalues attain the extrema under certain constraints by use of the notion of generalized directional derivative and the method of Lagrange multiplier.
LA - eng
KW - discrete Schrödinger operator
UR - http://eudml.org/doc/298036
ER -
References
top- Agranovich, Z. S., Marchenko, V. A., The Inverse Problem of Scattering Theory, Gordon and Breach, New York (1963). (1963) Zbl0117.06003MR0162497
- Anderson, P. W., 10.1103/PhysRev.109.1492, Phys. Rev. 109 (1958), 1492-1505. (1958) DOI10.1103/PhysRev.109.1492
- Astrauskas, A., 10.1007/s10955-012-0669-5, J. Stat. Phys. 150 (2013), 889-907. (2013) Zbl1266.82033MR3028390DOI10.1007/s10955-012-0669-5
- Borg, G., 10.1007/BF02421600, Acta Math. 78 (1946), 1-96 German. (1946) Zbl0063.00523MR0015185DOI10.1007/BF02421600
- Damanik, D., Hundertmark, D., Killip, R., Simon, B., 10.1007/s00220-003-0868-7, Commun. Math. Phys. 238 (2003), 545-562. (2003) Zbl1052.47027MR1993385DOI10.1007/s00220-003-0868-7
- Gel'fand, I. M., Levitan, B. M., 10.1090/trans2/001, Am. Math. Soc., Transl., II. Ser. 1 (1955), 253-304. (1955) Zbl0066.33603MR0073805DOI10.1090/trans2/001
- Gesztesy, F., Simon, B., 10.1007/BF02788147, J. Anal. Math. 73 (1997), 267-297. (1997) Zbl0924.15005MR1616422DOI10.1007/BF02788147
- Gladwell, G. M. L., 10.1007/978-94-015-1178-0, Mechanics: Dynamical Systems 9. Martinus Nijhoff Publishers, Dordrecht (1986). (1986) Zbl0646.73013MR0874749DOI10.1007/978-94-015-1178-0
- Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge University Press, Cambridge (1952). (1952) Zbl0047.05302MR0046395
- Hochstadt, H., 10.1007/BF01899647, Arch. Math. 18 (1967), 201-207. (1967) Zbl0147.27701MR0213379DOI10.1007/BF01899647
- Hochstadt, H., 10.1002/cpa.3160260514, Commun. Pure Appl. Math. 26 (1973), 715-729. (1973) Zbl0281.34015MR0330607DOI10.1002/cpa.3160260514
- Levinson, N., The inverse Sturm-Liouville problem, Mat. Tidsskr. B 1949 (1949), 25-30. (1949) Zbl0041.42310MR0032067
- Levitan, B. M., Inverse Sturm-Liouville Problem, VNU Science Press, Utrecht (1987). (1987) Zbl0749.34001MR0933088
- Levitan, B. M., Gasymov, M. G., 10.1070/RM1964v019n02ABEH001145, Russ. Math. Surv. 19 (1964), 1-63 translation from Usp. Mat. Nauk 19 1964 1-63. (1964) Zbl0145.10903MR0162996DOI10.1070/RM1964v019n02ABEH001145
- Pelinovsky, D. E., Stefanov, A., 10.1063/1.3005597, J. Math. Phys. 49 (2008), Article ID 113501, 17 pages. (2008) Zbl1159.81336MR2468536DOI10.1063/1.3005597
- Pöschel, J., Trubowitz, E., 10.1016/s0079-8169(08)x6138-0, Pure and Applied Mathematics 130. Academic Press, Boston (1987). (1987) Zbl0623.34001MR0894477DOI10.1016/s0079-8169(08)x6138-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.