Distributivity of ordinal sum implications over overlap and grouping functions
Kybernetika (2021)
- Volume: 57, Issue: 4, page 647-670
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPan, Deng, and Zhou, Hongjun. "Distributivity of ordinal sum implications over overlap and grouping functions." Kybernetika 57.4 (2021): 647-670. <http://eudml.org/doc/298059>.
@article{Pan2021,
abstract = {In 2015, a new class of fuzzy implications, called ordinal sum implications, was proposed by Su et al. They then discussed the distributivity of such ordinal sum implications with respect to t-norms and t-conorms. In this paper, we continue the study of distributivity of such ordinal sum implications over two newly-born classes of aggregation operators, namely overlap and grouping functions, respectively. The main results of this paper are characterizations of the overlap and/or grouping function solutions to the four usual distributive equations of ordinal sum fuzzy implications. And then sufficient and necessary conditions for ordinal sum implications distributing over overlap and grouping functions are given.},
author = {Pan, Deng, Zhou, Hongjun},
journal = {Kybernetika},
keywords = {distributivity; fuzzy implication functions; ordinal sum; overlap functions; grouping functions},
language = {eng},
number = {4},
pages = {647-670},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributivity of ordinal sum implications over overlap and grouping functions},
url = {http://eudml.org/doc/298059},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Pan, Deng
AU - Zhou, Hongjun
TI - Distributivity of ordinal sum implications over overlap and grouping functions
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 647
EP - 670
AB - In 2015, a new class of fuzzy implications, called ordinal sum implications, was proposed by Su et al. They then discussed the distributivity of such ordinal sum implications with respect to t-norms and t-conorms. In this paper, we continue the study of distributivity of such ordinal sum implications over two newly-born classes of aggregation operators, namely overlap and grouping functions, respectively. The main results of this paper are characterizations of the overlap and/or grouping function solutions to the four usual distributive equations of ordinal sum fuzzy implications. And then sufficient and necessary conditions for ordinal sum implications distributing over overlap and grouping functions are given.
LA - eng
KW - distributivity; fuzzy implication functions; ordinal sum; overlap functions; grouping functions
UR - http://eudml.org/doc/298059
ER -
References
top- Aczél, J., Lectures on Functional Equations and Their Applications., Academic Press, New York 1966. Zbl0139.09301
- Baczyński, M., Jayaram, B., Fuzzy Implications., Springer, Berlin 2008. Zbl1293.03012
- Baczyński, M., Jayaram, B., , IEEE Trans. Fuzzy Syst. 17 (2009), 590-603. DOI
- Bedregal, B., Dimuro, G. P., Bustince, H., Barrenechea, E., , Inf. Sci. 249 (2013), 148-170. DOI
- Bedregal, B., Bustince, H., Palmeira, E., Dimuro, G., Fernandez, J., , Int. J. Approx. Reason. 90 (2017), 1-16. DOI
- Bustince, H., Barrenechea, E., Pagola, M., , Fuzzy Sets Syst. 158 (2007), 496-516. DOI
- Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R., Overlap index, overlap functions and migrativity., In: Proc. IFSA/EUSFLAT Conference, 2009, pp. 300-305.
- Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R., , Nonlinear Anal. 72 (2010), 1488-1499. DOI
- Bustince, H., Pagola, M., Mesiar, R., Hüllermeier, E., Herrera, F., , IEEE Trans. Fuzzy Syst. 20 (2012), 405-415. DOI
- Cao, M., Hu, B. Q., Qiao, J., , Int. J. Approx. Reason. 100 (2018), 135-160. DOI
- Combs, W. E., Andrews, J. E., , IEEE Trans. Fuzzy Syst. 6 (1998), 1-11. DOI
- al., L. De Miguel et, , Fuzzy Sets Syst. 372 (2019), 81-96. DOI
- Dimuro, G. P., Bedregal, B., , Inf. Sci. 312 (2015), 78-88. DOI
- Dimuro, G. P., Bedregal, B., , Fuzzy Sets Syst. 252 (2014), 39-54. DOI
- Dimuro, G. P., Bedregal, B., Bustince, H., Asiáin, M. J., Mesiar, R., , Fuzzy Sets Syst. 287 (2016), 76-96. DOI
- Dimuro, G. P., Bedregal, B., Bustince, H., Jurio, A., Baczyński, M., Miś, K., , Int. J. Approx. Reason. 82 (2017), 170-192. DOI
- Dimuro, G. P., Bedregal, B., Santiago, R. H. N., , Inf. Sci. 279 (2014), 1-17. DOI
- Dimuro, G. P., Bedregal, B., Santiago, R. H. N., Reiser, R. H. S., , Inf. Sci. 181 (2011), 3898-3916. DOI
- Elkano, M., Galar, M., Sanz, J., Bustince, H., , Inf. Sci. 332 (2016), 94-114. DOI
- Elkano, M., Galar, M., Sanz, J., Fernández, A., Barrenechea, E., Herrera, F., Bustince, H., , IEEE Trans. Fuzzy Syst. 23 (2015), 1562-1580. DOI
- Elkano, M., Galar, M., Sanz, J., Schiavo, P. F., Pereira, S., Dimuro, G. P., Borges, E. N., Bustince, H., , Appl. Soft Comput. 67 (2018), 728-740. DOI
- Gómez, D., Rodríguez, J. T., Montero, J., Bustince, H., Barrenechea, E., , Fuzzy Sets Syst. 287 (2016), 57-75. DOI
- Jurio, A., Bustince, H., Pagola, M., Pradera, A., Yager, R., , Fuzzy Sets Syst. 229 (2013), 69-90. DOI
- Jayaram, B., , Inf. Sci. 177 (2007), 930-946. DOI
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Acdemic Publisher, Dordrecht, 2000. Zbl1087.20041
- Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities. Second edition., (A. Gilányi, ed.), Boston 2009.
- Lu, J., Zhao, B., , Fuzzy Sets Syst. 378 (2020), 103-124. DOI
- Mesiar, R., Mesiarová, A., , Fuzzy Sets Syst. 143 (2004), 47-57. DOI
- Qin, F., , Fuzzy Sets Syst. 299 (2016), 66-88. DOI
- Qin, F., Baczyński, M., Xie, A., , IEEE Trans. Fuzzy Syst. 21 (2012), 153-167. DOI
- Qin, F., Baczyński, M., , Fuzzy Sets Syst. 240 (2014), 86-102. DOI
- Qiao, J., Hu, B. Q., , Fuzzy Sets Syst. 332 (2018), 1-24. DOI
- Qiao, J., Hu, B. Q., , Inf. Sci. 438 (2018), 107-126. DOI
- Qiao, J., Hu, B. Q., , Fuzzy Sets Syst. 357 (2019), 91-116. DOI
- Qiao, J., Hu, B. Q., , IEEE Trans. Fuzzy Syst. 26 (2018), 2421-2433. DOI
- Qiao, J., Hu, B. Q., , Fuzzy Sets Syst. 323 (2017), 19-55. DOI
- Su, Y., Xie, A., Liu, H. W., , Inf. Sci. 293 (2015), 251-262. DOI
- Su, Y., Zong, W. W., Liu, H. W., , Fuzzy Sets Syst. 299 (2016), 41-65. DOI
- Su, Y., Zong, W. W., Liu, H. W., , IEEE Trans. Fuzzy Syst. 24 (2016), 827-840. DOI
- Ti, L., Zhou, H., , J. Intell. Fuzzy Syst. 34 (2018), 3993-4007. DOI
- Trillas, E., Alsina, C., , IEEE Trans. Fuzzy Syst. 10 (2002), 84-88. DOI
- Wang, Y. M., Liu, H. W., , Fuzzy Sets Syst. 372 (2019), 97-110. DOI
- Xie, A., Li, C., Liu, H., , IEEE Trans. Fuzzy Syst. 21 (2013), 541-554. DOI
- Xie, A., Liu, H., Zhang, F., Li, C., , Fuzzy Sets Syst. 205 (2012), 76-100. DOI
- Zhang, T. H., Qin, F., Li, W. H., , Fuzzy Sets Syst. 403 (2021), 56-77. DOI
- Zhang, T. H., Qin, F., , Int. J. Approx. Reason. 119 (2020), 353-372. DOI
- Zhou, H., , IEEE Trans. Fuzzy Syst. DOI
- Zhu, K., Wang, J., Yang, Y., , Fuzzy Sets Syst. 408 (2021), 108-117. DOI
- Zhu, K., Wang, J., Yang, Y., , Fuzzy Sets Syst. 403 (2021), 139-147 DOI
- Zhu, K., Wang, J., Yang, Y., , Fuzzy Sets Syst. 414 (2021), 135-145 DOI
- Zhu, K. Y., Hu, B. Q., , Fuzzy Sets Syst. 386 (2020), 48-59. DOI
- Chang, Q., Zhou, H., , Int. J. Approx. Reason. 131 (2021), 189-213. DOI
- Zhou, H., , IEEE Trans. Fuzzy Syst. 29 (2021), 846-860. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.