Distributivity of ordinal sum implications over overlap and grouping functions

Deng Pan; Hongjun Zhou

Kybernetika (2021)

  • Volume: 57, Issue: 4, page 647-670
  • ISSN: 0023-5954

Abstract

top
In 2015, a new class of fuzzy implications, called ordinal sum implications, was proposed by Su et al. They then discussed the distributivity of such ordinal sum implications with respect to t-norms and t-conorms. In this paper, we continue the study of distributivity of such ordinal sum implications over two newly-born classes of aggregation operators, namely overlap and grouping functions, respectively. The main results of this paper are characterizations of the overlap and/or grouping function solutions to the four usual distributive equations of ordinal sum fuzzy implications. And then sufficient and necessary conditions for ordinal sum implications distributing over overlap and grouping functions are given.

How to cite

top

Pan, Deng, and Zhou, Hongjun. "Distributivity of ordinal sum implications over overlap and grouping functions." Kybernetika 57.4 (2021): 647-670. <http://eudml.org/doc/298059>.

@article{Pan2021,
abstract = {In 2015, a new class of fuzzy implications, called ordinal sum implications, was proposed by Su et al. They then discussed the distributivity of such ordinal sum implications with respect to t-norms and t-conorms. In this paper, we continue the study of distributivity of such ordinal sum implications over two newly-born classes of aggregation operators, namely overlap and grouping functions, respectively. The main results of this paper are characterizations of the overlap and/or grouping function solutions to the four usual distributive equations of ordinal sum fuzzy implications. And then sufficient and necessary conditions for ordinal sum implications distributing over overlap and grouping functions are given.},
author = {Pan, Deng, Zhou, Hongjun},
journal = {Kybernetika},
keywords = {distributivity; fuzzy implication functions; ordinal sum; overlap functions; grouping functions},
language = {eng},
number = {4},
pages = {647-670},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributivity of ordinal sum implications over overlap and grouping functions},
url = {http://eudml.org/doc/298059},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Pan, Deng
AU - Zhou, Hongjun
TI - Distributivity of ordinal sum implications over overlap and grouping functions
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 647
EP - 670
AB - In 2015, a new class of fuzzy implications, called ordinal sum implications, was proposed by Su et al. They then discussed the distributivity of such ordinal sum implications with respect to t-norms and t-conorms. In this paper, we continue the study of distributivity of such ordinal sum implications over two newly-born classes of aggregation operators, namely overlap and grouping functions, respectively. The main results of this paper are characterizations of the overlap and/or grouping function solutions to the four usual distributive equations of ordinal sum fuzzy implications. And then sufficient and necessary conditions for ordinal sum implications distributing over overlap and grouping functions are given.
LA - eng
KW - distributivity; fuzzy implication functions; ordinal sum; overlap functions; grouping functions
UR - http://eudml.org/doc/298059
ER -

References

top
  1. Aczél, J., Lectures on Functional Equations and Their Applications., Academic Press, New York 1966. Zbl0139.09301
  2. Baczyński, M., Jayaram, B., Fuzzy Implications., Springer, Berlin 2008. Zbl1293.03012
  3. Baczyński, M., Jayaram, B., , IEEE Trans. Fuzzy Syst. 17 (2009), 590-603. DOI
  4. Bedregal, B., Dimuro, G. P., Bustince, H., Barrenechea, E., , Inf. Sci. 249 (2013), 148-170. DOI
  5. Bedregal, B., Bustince, H., Palmeira, E., Dimuro, G., Fernandez, J., , Int. J. Approx. Reason. 90 (2017), 1-16. DOI
  6. Bustince, H., Barrenechea, E., Pagola, M., , Fuzzy Sets Syst. 158 (2007), 496-516. DOI
  7. Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R., Overlap index, overlap functions and migrativity., In: Proc. IFSA/EUSFLAT Conference, 2009, pp. 300-305. 
  8. Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R., , Nonlinear Anal. 72 (2010), 1488-1499. DOI
  9. Bustince, H., Pagola, M., Mesiar, R., Hüllermeier, E., Herrera, F., , IEEE Trans. Fuzzy Syst. 20 (2012), 405-415. DOI
  10. Cao, M., Hu, B. Q., Qiao, J., , Int. J. Approx. Reason. 100 (2018), 135-160. DOI
  11. Combs, W. E., Andrews, J. E., , IEEE Trans. Fuzzy Syst. 6 (1998), 1-11. DOI
  12. al., L. De Miguel et, , Fuzzy Sets Syst. 372 (2019), 81-96. DOI
  13. Dimuro, G. P., Bedregal, B., , Inf. Sci. 312 (2015), 78-88. DOI
  14. Dimuro, G. P., Bedregal, B., , Fuzzy Sets Syst. 252 (2014), 39-54. DOI
  15. Dimuro, G. P., Bedregal, B., Bustince, H., Asiáin, M. J., Mesiar, R., , Fuzzy Sets Syst. 287 (2016), 76-96. DOI
  16. Dimuro, G. P., Bedregal, B., Bustince, H., Jurio, A., Baczyński, M., Miś, K., , Int. J. Approx. Reason. 82 (2017), 170-192. DOI
  17. Dimuro, G. P., Bedregal, B., Santiago, R. H. N., , Inf. Sci. 279 (2014), 1-17. DOI
  18. Dimuro, G. P., Bedregal, B., Santiago, R. H. N., Reiser, R. H. S., , Inf. Sci. 181 (2011), 3898-3916. DOI
  19. Elkano, M., Galar, M., Sanz, J., Bustince, H., , Inf. Sci. 332 (2016), 94-114. DOI
  20. Elkano, M., Galar, M., Sanz, J., Fernández, A., Barrenechea, E., Herrera, F., Bustince, H., , IEEE Trans. Fuzzy Syst. 23 (2015), 1562-1580. DOI
  21. Elkano, M., Galar, M., Sanz, J., Schiavo, P. F., Pereira, S., Dimuro, G. P., Borges, E. N., Bustince, H., , Appl. Soft Comput. 67 (2018), 728-740. DOI
  22. Gómez, D., Rodríguez, J. T., Montero, J., Bustince, H., Barrenechea, E., , Fuzzy Sets Syst. 287 (2016), 57-75. DOI
  23. Jurio, A., Bustince, H., Pagola, M., Pradera, A., Yager, R., , Fuzzy Sets Syst. 229 (2013), 69-90. DOI
  24. Jayaram, B., , Inf. Sci. 177 (2007), 930-946. DOI
  25. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Acdemic Publisher, Dordrecht, 2000. Zbl1087.20041
  26. Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities. Second edition., (A. Gilányi, ed.), Boston 2009. 
  27. Lu, J., Zhao, B., , Fuzzy Sets Syst. 378 (2020), 103-124. DOI
  28. Mesiar, R., Mesiarová, A., , Fuzzy Sets Syst. 143 (2004), 47-57. DOI
  29. Qin, F., , Fuzzy Sets Syst. 299 (2016), 66-88. DOI
  30. Qin, F., Baczyński, M., Xie, A., , IEEE Trans. Fuzzy Syst. 21 (2012), 153-167. DOI
  31. Qin, F., Baczyński, M., , Fuzzy Sets Syst. 240 (2014), 86-102. DOI
  32. Qiao, J., Hu, B. Q., , Fuzzy Sets Syst. 332 (2018), 1-24. DOI
  33. Qiao, J., Hu, B. Q., , Inf. Sci. 438 (2018), 107-126. DOI
  34. Qiao, J., Hu, B. Q., , Fuzzy Sets Syst. 357 (2019), 91-116. DOI
  35. Qiao, J., Hu, B. Q., , IEEE Trans. Fuzzy Syst. 26 (2018), 2421-2433. DOI
  36. Qiao, J., Hu, B. Q., , Fuzzy Sets Syst. 323 (2017), 19-55. DOI
  37. Su, Y., Xie, A., Liu, H. W., , Inf. Sci. 293 (2015), 251-262. DOI
  38. Su, Y., Zong, W. W., Liu, H. W., , Fuzzy Sets Syst. 299 (2016), 41-65. DOI
  39. Su, Y., Zong, W. W., Liu, H. W., , IEEE Trans. Fuzzy Syst. 24 (2016), 827-840. DOI
  40. Ti, L., Zhou, H., , J. Intell. Fuzzy Syst. 34 (2018), 3993-4007. DOI
  41. Trillas, E., Alsina, C., , IEEE Trans. Fuzzy Syst. 10 (2002), 84-88. DOI
  42. Wang, Y. M., Liu, H. W., , Fuzzy Sets Syst. 372 (2019), 97-110. DOI
  43. Xie, A., Li, C., Liu, H., , IEEE Trans. Fuzzy Syst. 21 (2013), 541-554. DOI
  44. Xie, A., Liu, H., Zhang, F., Li, C., , Fuzzy Sets Syst. 205 (2012), 76-100. DOI
  45. Zhang, T. H., Qin, F., Li, W. H., , Fuzzy Sets Syst. 403 (2021), 56-77. DOI
  46. Zhang, T. H., Qin, F., , Int. J. Approx. Reason. 119 (2020), 353-372. DOI
  47. Zhou, H., , IEEE Trans. Fuzzy Syst. DOI
  48. Zhu, K., Wang, J., Yang, Y., , Fuzzy Sets Syst. 408 (2021), 108-117. DOI
  49. Zhu, K., Wang, J., Yang, Y., , Fuzzy Sets Syst. 403 (2021), 139-147 DOI
  50. Zhu, K., Wang, J., Yang, Y., , Fuzzy Sets Syst. 414 (2021), 135-145 DOI
  51. Zhu, K. Y., Hu, B. Q., , Fuzzy Sets Syst. 386 (2020), 48-59. DOI
  52. Chang, Q., Zhou, H., , Int. J. Approx. Reason. 131 (2021), 189-213. DOI
  53. Zhou, H., , IEEE Trans. Fuzzy Syst. 29 (2021), 846-860. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.