Uniform regularity for an isentropic compressible MHD- approximate model arising in radiation hydrodynamics
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 881-890
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTang, Tong, and Sun, Jianzhu. "Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics." Czechoslovak Mathematical Journal 71.3 (2021): 881-890. <http://eudml.org/doc/298070>.
@article{Tang2021,
abstract = {It is well known that people can derive the radiation MHD model from an MHD-$P1$ approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD-$P1$ approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result.},
author = {Tang, Tong, Sun, Jianzhu},
journal = {Czechoslovak Mathematical Journal},
keywords = {uniform regularity; MHD-$P1$; compressible},
language = {eng},
number = {3},
pages = {881-890},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics},
url = {http://eudml.org/doc/298070},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Tang, Tong
AU - Sun, Jianzhu
TI - Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 881
EP - 890
AB - It is well known that people can derive the radiation MHD model from an MHD-$P1$ approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD-$P1$ approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result.
LA - eng
KW - uniform regularity; MHD-$P1$; compressible
UR - http://eudml.org/doc/298070
ER -
References
top- Alazard, T., 10.1007/s00205-005-0393-2, Arch. Ration. Mech. Anal. 180 (2006), 1-73. (2006) Zbl1108.76061MR2211706DOI10.1007/s00205-005-0393-2
- Chandrasekhar, S., Radiative Transfer, Dover Publications, New York (1960). (1960) Zbl0037.43201MR0111583
- Danchin, R., Ducomet, B., 10.1137/15M1009081, SIAM J. Math. Anal. 48 (2016), 1025-1053. (2016) Zbl1339.35236MR3473591DOI10.1137/15M1009081
- Dou, C., Jiang, S., Ou, Y., 10.1016/j.jde.2014.09.017, J. Differ. Equations 258 (2015), 379-398. (2015) Zbl1310.35187MR3274763DOI10.1016/j.jde.2014.09.017
- Fan, J., Li, F., Nakamura, G., 10.4310/CMS.2016.v14.n7.a11, Commun. Math. Sci. 14 (2016), 2023-2036. (2016) Zbl1353.35031MR3549360DOI10.4310/CMS.2016.v14.n7.a11
- Fan, J., Li, F., Nakamura, G., 10.1002/mma.4506, Math. Methods Appl. Sci. 40 (2017), 6987-6997. (2017) Zbl1387.35451MR3742109DOI10.1002/mma.4506
- Feireisl, E., 10.1093/acprof:oso/9780198528388.001.0001, Oxford Lecture Series in Mathematics and its Applications 26. Oxford University Press, Oxford (2004). (2004) Zbl1080.76001MR2040667DOI10.1093/acprof:oso/9780198528388.001.0001
- Feireisl, E., 10.1512/iumj.2004.53.2510, Indiana Univ. Math. J. 53 (2004), 1705-1738. (2004) Zbl1087.35078MR2106342DOI10.1512/iumj.2004.53.2510
- Feireisl, E., Novotný, A., Petzeltová, H., 10.1007/PL00000976, J. Math. Fluid Mech. 3 (2001), 358-392. (2001) Zbl0997.35043MR1867887DOI10.1007/PL00000976
- Gong, H., Li, J., Liu, X.-G., Zhang, X., 10.4310/CMS.2020.v18.n7.a4, Commun. Math. Sci. 18 (2020), 1891-1909. (2020) MR4195559DOI10.4310/CMS.2020.v18.n7.a4
- He, F., Fan, J., Zhou, Y., 10.1002/zamm.201700142, ZAMM, Z. Angew. Math. Mech. 98 (2018), 1632-1641. (2018) MR3854726DOI10.1002/zamm.201700142
- Huang, X., 10.1007/s11425-019-9755-3, (to appear) in Sci. China, Math. DOI10.1007/s11425-019-9755-3
- Jiang, S., Li, F., Xie, F., 10.1137/140987596, SIAM J. Math. Anal. 47 (2015), 3726-3746. (2015) Zbl1331.35262MR3403137DOI10.1137/140987596
- Kato, T., Ponce, G., 10.1002/cpa.3160410704, Commun. Pure Appl. Math. 41 (1988), 891-907. (1988) Zbl0671.35066MR0951744DOI10.1002/cpa.3160410704
- Métivier, G., Schochet, S., 10.1007/PL00004241, Arch. Ration. Mech. Anal. 158 (2001), 61-90. (2001) Zbl0974.76072MR1834114DOI10.1007/PL00004241
- Novotný, A., Straškraba, I., Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press, Oxford (2004). (2004) Zbl1088.35051MR2084891
- Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78. Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
- Vol'pert, A. I., Khudyaev, S. I., 10.1070/SM1972v016n04ABEH001438, Mat. Sb., N. Ser. 87 (1972), 504-528 Russian. (1972) Zbl0239.35017MR0390528DOI10.1070/SM1972v016n04ABEH001438
- Xie, F., Klingenberg, C., 10.1142/S0219530516500238, Anal. Appl., Singap. 16 (2018), 85-102. (2018) Zbl1386.35361MR3716736DOI10.1142/S0219530516500238
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.