Uniform regularity for an isentropic compressible MHD- P 1 approximate model arising in radiation hydrodynamics

Tong Tang; Jianzhu Sun

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 3, page 881-890
  • ISSN: 0011-4642

Abstract

top
It is well known that people can derive the radiation MHD model from an MHD- P 1 approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD- P 1 approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD- P 1 approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result.

How to cite

top

Tang, Tong, and Sun, Jianzhu. "Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics." Czechoslovak Mathematical Journal 71.3 (2021): 881-890. <http://eudml.org/doc/298070>.

@article{Tang2021,
abstract = {It is well known that people can derive the radiation MHD model from an MHD-$P1$ approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD-$P1$ approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result.},
author = {Tang, Tong, Sun, Jianzhu},
journal = {Czechoslovak Mathematical Journal},
keywords = {uniform regularity; MHD-$P1$; compressible},
language = {eng},
number = {3},
pages = {881-890},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics},
url = {http://eudml.org/doc/298070},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Tang, Tong
AU - Sun, Jianzhu
TI - Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 881
EP - 890
AB - It is well known that people can derive the radiation MHD model from an MHD-$P1$ approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD-$P1$ approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result.
LA - eng
KW - uniform regularity; MHD-$P1$; compressible
UR - http://eudml.org/doc/298070
ER -

References

top
  1. Alazard, T., 10.1007/s00205-005-0393-2, Arch. Ration. Mech. Anal. 180 (2006), 1-73. (2006) Zbl1108.76061MR2211706DOI10.1007/s00205-005-0393-2
  2. Chandrasekhar, S., Radiative Transfer, Dover Publications, New York (1960). (1960) Zbl0037.43201MR0111583
  3. Danchin, R., Ducomet, B., 10.1137/15M1009081, SIAM J. Math. Anal. 48 (2016), 1025-1053. (2016) Zbl1339.35236MR3473591DOI10.1137/15M1009081
  4. Dou, C., Jiang, S., Ou, Y., 10.1016/j.jde.2014.09.017, J. Differ. Equations 258 (2015), 379-398. (2015) Zbl1310.35187MR3274763DOI10.1016/j.jde.2014.09.017
  5. Fan, J., Li, F., Nakamura, G., 10.4310/CMS.2016.v14.n7.a11, Commun. Math. Sci. 14 (2016), 2023-2036. (2016) Zbl1353.35031MR3549360DOI10.4310/CMS.2016.v14.n7.a11
  6. Fan, J., Li, F., Nakamura, G., 10.1002/mma.4506, Math. Methods Appl. Sci. 40 (2017), 6987-6997. (2017) Zbl1387.35451MR3742109DOI10.1002/mma.4506
  7. Feireisl, E., 10.1093/acprof:oso/9780198528388.001.0001, Oxford Lecture Series in Mathematics and its Applications 26. Oxford University Press, Oxford (2004). (2004) Zbl1080.76001MR2040667DOI10.1093/acprof:oso/9780198528388.001.0001
  8. Feireisl, E., 10.1512/iumj.2004.53.2510, Indiana Univ. Math. J. 53 (2004), 1705-1738. (2004) Zbl1087.35078MR2106342DOI10.1512/iumj.2004.53.2510
  9. Feireisl, E., Novotný, A., Petzeltová, H., 10.1007/PL00000976, J. Math. Fluid Mech. 3 (2001), 358-392. (2001) Zbl0997.35043MR1867887DOI10.1007/PL00000976
  10. Gong, H., Li, J., Liu, X.-G., Zhang, X., 10.4310/CMS.2020.v18.n7.a4, Commun. Math. Sci. 18 (2020), 1891-1909. (2020) MR4195559DOI10.4310/CMS.2020.v18.n7.a4
  11. He, F., Fan, J., Zhou, Y., 10.1002/zamm.201700142, ZAMM, Z. Angew. Math. Mech. 98 (2018), 1632-1641. (2018) MR3854726DOI10.1002/zamm.201700142
  12. Huang, X., 10.1007/s11425-019-9755-3, (to appear) in Sci. China, Math. DOI10.1007/s11425-019-9755-3
  13. Jiang, S., Li, F., Xie, F., 10.1137/140987596, SIAM J. Math. Anal. 47 (2015), 3726-3746. (2015) Zbl1331.35262MR3403137DOI10.1137/140987596
  14. Kato, T., Ponce, G., 10.1002/cpa.3160410704, Commun. Pure Appl. Math. 41 (1988), 891-907. (1988) Zbl0671.35066MR0951744DOI10.1002/cpa.3160410704
  15. Métivier, G., Schochet, S., 10.1007/PL00004241, Arch. Ration. Mech. Anal. 158 (2001), 61-90. (2001) Zbl0974.76072MR1834114DOI10.1007/PL00004241
  16. Novotný, A., Straškraba, I., Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press, Oxford (2004). (2004) Zbl1088.35051MR2084891
  17. Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78. Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
  18. Vol'pert, A. I., Khudyaev, S. I., 10.1070/SM1972v016n04ABEH001438, Mat. Sb., N. Ser. 87 (1972), 504-528 Russian. (1972) Zbl0239.35017MR0390528DOI10.1070/SM1972v016n04ABEH001438
  19. Xie, F., Klingenberg, C., 10.1142/S0219530516500238, Anal. Appl., Singap. 16 (2018), 85-102. (2018) Zbl1386.35361MR3716736DOI10.1142/S0219530516500238

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.