Global exponential stability of pseudo almost automorphic solutions for delayed Cohen-Grosberg neural networks with measure
Chaouki Aouiti; Hediene Jallouli; Mohsen Miraoui
Applications of Mathematics (2022)
- Volume: 67, Issue: 3, page 393-418
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAouiti, Chaouki, Jallouli, Hediene, and Miraoui, Mohsen. "Global exponential stability of pseudo almost automorphic solutions for delayed Cohen-Grosberg neural networks with measure." Applications of Mathematics 67.3 (2022): 393-418. <http://eudml.org/doc/298105>.
@article{Aouiti2022,
abstract = {We investigate the Cohen-Grosberg differential equations with mixed delays and time-varying coefficient: Several useful results on the functional space of such functions like completeness and composition theorems are established. By using the fixed-point theorem and some properties of the doubly measure pseudo almost automorphic functions, a set of sufficient criteria are established to ensure the existence, uniqueness and global exponential stability of a $(\mu ,\nu )$-pseudo almost automorphic solution. The theory of this work generalizes the classical results on weighted pseudo almost automorphic functions. Finally, a numerical example is provided to illustrate the validity of the proposed theoretical results.},
author = {Aouiti, Chaouki, Jallouli, Hediene, Miraoui, Mohsen},
journal = {Applications of Mathematics},
keywords = {pseudo almost automorphic solution; double measure; mixed delays},
language = {eng},
number = {3},
pages = {393-418},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global exponential stability of pseudo almost automorphic solutions for delayed Cohen-Grosberg neural networks with measure},
url = {http://eudml.org/doc/298105},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Aouiti, Chaouki
AU - Jallouli, Hediene
AU - Miraoui, Mohsen
TI - Global exponential stability of pseudo almost automorphic solutions for delayed Cohen-Grosberg neural networks with measure
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 393
EP - 418
AB - We investigate the Cohen-Grosberg differential equations with mixed delays and time-varying coefficient: Several useful results on the functional space of such functions like completeness and composition theorems are established. By using the fixed-point theorem and some properties of the doubly measure pseudo almost automorphic functions, a set of sufficient criteria are established to ensure the existence, uniqueness and global exponential stability of a $(\mu ,\nu )$-pseudo almost automorphic solution. The theory of this work generalizes the classical results on weighted pseudo almost automorphic functions. Finally, a numerical example is provided to illustrate the validity of the proposed theoretical results.
LA - eng
KW - pseudo almost automorphic solution; double measure; mixed delays
UR - http://eudml.org/doc/298105
ER -
References
top- Dads, E. H. Ait, Ezzinbi, K., Miraoui, M., 10.1142/S0129167X15500901, Int. J. Math. 26 (2015), Article ID 1550090, 21 pages. (2015) Zbl1341.34049MR3413985DOI10.1142/S0129167X15500901
- Aouiti, C., Dridi, F., 10.1007/s11063-018-9880-y, Neural Process. Lett. 49 (2019), 1459-1483. (2019) DOI10.1007/s11063-018-9880-y
- Aouiti, C., M'hamdi, M. S., Touati, A., 10.1007/s11063-016-9515-0, Neural Process. Lett. 45 (2017), 121-140. (2017) DOI10.1007/s11063-016-9515-0
- Blot, J., Mophou, G. M., N'Guérékata, G., Pennequin, D., 10.1016/j.na.2008.10.113, Nonlinear Anal., Theory Methods Appl., Ser. A 71 (2009), 903-909. (2009) Zbl1177.34077MR2527511DOI10.1016/j.na.2008.10.113
- Bochner, S., 10.1073/pnas.52.4.907, Proc. Natl. Acad. Sci. USA 52 (1964), 907-910. (1964) Zbl0134.30102MR0168997DOI10.1073/pnas.52.4.907
- Diagana, T., Ezzinbi, K., Miraoui, M., 10.4067/S0719-06462014000200001, Cubo 16 (2014), 1-32. (2014) Zbl1326.34075MR3237503DOI10.4067/S0719-06462014000200001
- Kavitha, V., Abbas, S., Murugesu, R., -pseudo almost automorphic solutions of fractional order neutral integro-differential equations, Nonlinear Stud. 24 (2017), 669-685. (2017) Zbl1375.45011MR3701881
- Li, Y., Meng, X., Zhang, X., 10.1155/2015/812670, Math. Probl. Eng. 2015 (2015), Article ID 812670, 14 pages. (2015) Zbl1394.34145MR3321681DOI10.1155/2015/812670
- Liang, J., Zhang, J., Xiao, T.-J., 10.1016/j.jmaa.2007.09.065, J. Math. Anal. Appl. 340 (2008), 1493-1499. (2008) Zbl1134.43001MR2390946DOI10.1016/j.jmaa.2007.09.065
- Miraoui, M., Yaakoubi, N., 10.1080/01630563.2018.1561469, Numer. Funct. Anal. Optim. 40 (2019), 571-585. (2019) Zbl1464.34092MR3948375DOI10.1080/01630563.2018.1561469
- N'Guérékata, G. M., 10.1007/978-1-4757-4482-8, Kluwer Academic, New York (2001). (2001) Zbl1001.43001MR1880351DOI10.1007/978-1-4757-4482-8
- N'Guérékata, G. M., 10.1007/b139078, Springer, New York (2005). (2005) Zbl1073.43004MR2107829DOI10.1007/b139078
- Xiao, T.-J., Liang, J., Zhang, J., 10.1007/s00233-007-9011-y, Semigroup Forum 76 (2008), 518-524. (2008) Zbl1154.46023MR2395199DOI10.1007/s00233-007-9011-y
- Zhang, C. Y., 10.1090/S0002-9939-1994-1186140-8, Proc. Am. Math. Soc. 121 (1994), 167-174. (1994) Zbl0818.42003MR1186140DOI10.1090/S0002-9939-1994-1186140-8
- Zhang, C. Y., 10.1006/jmaa.1994.1005, J. Math. Anal. Appl. 181 (1994), 62-76. (1994) Zbl0796.34029MR1257954DOI10.1006/jmaa.1994.1005
- Zhu, H., Zhu, Q., Sun, X., Zhou, H., 10.1186/s13662-016-0831-5, Adv. Difference Equ. 2016 (2016), Article ID 120, 17 pages. (2016) Zbl1419.93054MR3492135DOI10.1186/s13662-016-0831-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.