On the powers of quasihomogeneous Toeplitz operators
Aissa Bouhali; Zohra Bendaoud; Issam Louhichi
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1049-1061
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBouhali, Aissa, Bendaoud, Zohra, and Louhichi, Issam. "On the powers of quasihomogeneous Toeplitz operators." Czechoslovak Mathematical Journal 71.4 (2021): 1049-1061. <http://eudml.org/doc/298153>.
@article{Bouhali2021,
abstract = {We present sufficient conditions for the existence of $p$th powers of a quasihomogeneous Toeplitz operator $T_\{\{\rm e\}^\{\{\rm i\} s\theta \}\psi \}$, where $\psi $ is a radial polynomial function and $p$, $s$ are natural numbers. A large class of examples is provided to illustrate our results. To our best knowledge those examples are not covered by the current literature. The main tools in the proof of our results are the Mellin transform and some classical theorems of complex analysis.},
author = {Bouhali, Aissa, Bendaoud, Zohra, Louhichi, Issam},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasihomogeneous Toeplitz operator; Mellin transform},
language = {eng},
number = {4},
pages = {1049-1061},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the powers of quasihomogeneous Toeplitz operators},
url = {http://eudml.org/doc/298153},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Bouhali, Aissa
AU - Bendaoud, Zohra
AU - Louhichi, Issam
TI - On the powers of quasihomogeneous Toeplitz operators
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1049
EP - 1061
AB - We present sufficient conditions for the existence of $p$th powers of a quasihomogeneous Toeplitz operator $T_{{\rm e}^{{\rm i} s\theta }\psi }$, where $\psi $ is a radial polynomial function and $p$, $s$ are natural numbers. A large class of examples is provided to illustrate our results. To our best knowledge those examples are not covered by the current literature. The main tools in the proof of our results are the Mellin transform and some classical theorems of complex analysis.
LA - eng
KW - quasihomogeneous Toeplitz operator; Mellin transform
UR - http://eudml.org/doc/298153
ER -
References
top- Ahern, P., Čučković, Ž., 10.1006/jfan.2001.3811, J. Funct. Anal. 187 (2001), 200-210. (2001) Zbl0996.47037MR1867348DOI10.1006/jfan.2001.3811
- Cohen, A. M., 10.1007/978-0-387-68855-8, Numerical Methods and Algorithms 5. Springer, New York (2007). (2007) Zbl1127.65094MR2325479DOI10.1007/978-0-387-68855-8
- Čučković, Ž., Rao, N. V., 10.1006/jfan.1997.3204, J. Funct. Anal. 154 (1998), 195-214. (1998) Zbl0936.47015MR1616532DOI10.1006/jfan.1997.3204
- Godement, R., 10.1007/978-3-319-16053-5, Universitext. Springer, Cham (2015). (2015) Zbl1318.30001MR3328588DOI10.1007/978-3-319-16053-5
- Louhichi, I., 10.1090/S0002-9939-06-08626-6, Proc. Am. Math. Soc. 135 (2007), 1465-1475. (2007) Zbl1112.47023MR2276656DOI10.1090/S0002-9939-06-08626-6
- Louhichi, I., Rao, N. V., 10.2140/pjm.2011.252.127, Pac. J. Math. 252 (2011), 127-144. (2011) Zbl1237.47033MR2862145DOI10.2140/pjm.2011.252.127
- Louhichi, I., Rao, N. V., Yousef, A., 10.1007/s11785-008-0097-3, Complex Anal. Oper. Theory 3 (2009), 881-889. (2009) Zbl1195.47018MR2570117DOI10.1007/s11785-008-0097-3
- Louhichi, I., Strouse, E., Zakariasy, L., 10.1007/s00020-005-1369-1, Integral Equations Oper. Theory 54 (2006), 525-539. (2006) Zbl1109.47023MR2222982DOI10.1007/s00020-005-1369-1
- Louhichi, I., Zakariasy, L., 10.1007/s00013-005-1198-0, Arch. Math. 85 (2005), 248-257. (2005) Zbl1088.47019MR2172383DOI10.1007/s00013-005-1198-0
- Remmert, R., 10.1007/978-1-4757-2956-6, Graduate Texts in Mathematics 172. Springer, New York (1998). (1998) Zbl0895.30001MR1483074DOI10.1007/978-1-4757-2956-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.