Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications

Yanli He; Kun Li

Applications of Mathematics (2021)

  • Volume: 66, Issue: 4, page 641-656
  • ISSN: 0862-7940

Abstract

top
In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.

How to cite

top

He, Yanli, and Li, Kun. "Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications." Applications of Mathematics 66.4 (2021): 641-656. <http://eudml.org/doc/298167>.

@article{He2021,
abstract = {In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.},
author = {He, Yanli, Li, Kun},
journal = {Applications of Mathematics},
keywords = {higher dimensional lattice; traveling wave solution; delay; upper and lower solutions},
language = {eng},
number = {4},
pages = {641-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications},
url = {http://eudml.org/doc/298167},
volume = {66},
year = {2021},
}

TY - JOUR
AU - He, Yanli
AU - Li, Kun
TI - Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 641
EP - 656
AB - In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.
LA - eng
KW - higher dimensional lattice; traveling wave solution; delay; upper and lower solutions
UR - http://eudml.org/doc/298167
ER -

References

top
  1. Cahn, J. W., Mallet-Paret, J., Vleck, E. S. Van, 10.1137/S0036139996312703, SIAM J. Appl. Math. 59 (1999), 455-493. (1999) Zbl0917.34052MR1654427DOI10.1137/S0036139996312703
  2. Chen, X., Guo, J.-S., 10.1006/jdeq.2001.4153, J. Differ. Equations 184 (2002), 549-569. (2002) Zbl1010.39004MR1929888DOI10.1006/jdeq.2001.4153
  3. Chen, X., Guo, J.-S., 10.1007/s00208-003-0414-0, Math. Ann. 326 (2003), 123-146. (2003) Zbl1086.34011MR1981615DOI10.1007/s00208-003-0414-0
  4. Cheng, C.-P., Li, W.-T., Wang, Z.-C., Zheng, S., 10.1142/S0218127416500498, Int. J. Bifurcation Chaos Appl. Sci. Eng. 26 (2016), Article ID 1650049, 13 pages. (2016) Zbl1336.34106MR3482808DOI10.1142/S0218127416500498
  5. Chow, S.-N., Mallet-Paret, J., Shen, W., 10.1006/jdeq.1998.3478, J. Differ. Equations 149 (1998), 248-291. (1998) Zbl0911.34050MR1646240DOI10.1006/jdeq.1998.3478
  6. Guo, J.-S., Wu, C.-H., Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system, Osaka J. Math. 45 (2008), 327-346. (2008) Zbl1155.34016MR2441943
  7. Guo, J.-S., Wu, C.-H., 10.1016/j.jde.2012.01.009, J. Differ. Equations 252 (2012), 4357-4391. (2012) Zbl1251.34018MR2881041DOI10.1016/j.jde.2012.01.009
  8. Hankerson, D., Zinner, B., 10.1007/BF01053165, J. Dyn. Differ. Equations 5 (1993), 359-373. (1993) Zbl0777.34013MR1223452DOI10.1007/BF01053165
  9. Huang, J., Lu, G., Ruan, S., 10.1016/j.na.2004.10.020, Nonlinear Anal., Theory Methods Appl., Ser. A 60 (2005), 1331-1350. (2005) Zbl1084.34059MR2112956DOI10.1016/j.na.2004.10.020
  10. Huang, J., Lu, G., Zou, X., 10.1016/j.jmaa.2004.05.027, J. Math. Anal. Appl. 298 (2004), 538-558. (2004) Zbl1126.34323MR2086974DOI10.1016/j.jmaa.2004.05.027
  11. Keener, J. P., 10.1137/0147038, SIAM J. Appl. Math. 47 (1987), 556-572. (1987) Zbl0649.34019MR0889639DOI10.1137/0147038
  12. Li, K., Huang, J., Li, X., He, Y., 10.1080/00036811.2017.1295450, Appl. Anal. 97 (2018), 982-999. (2018) Zbl1400.34125MR3777853DOI10.1080/00036811.2017.1295450
  13. Li, K., Li, X., 10.1080/10236198.2017.1409222, J. Difference Equ. Appl. 24 (2018), 391-408. (2018) Zbl1425.37050MR3757175DOI10.1080/10236198.2017.1409222
  14. Li, W.-T., Lin, G., Ruan, S., 10.1088/0951-7715/19/6/003, Nonlinearity 19 (2006), 1253-1273. (2006) Zbl1103.35049MR2229998DOI10.1088/0951-7715/19/6/003
  15. Lin, G., Li, W.-T., 10.1016/j.nonrwa.2010.01.013, Nonlinear Anal., Real World Appl. 11 (2010), 3666-3679. (2010) Zbl1206.34099MR2683821DOI10.1016/j.nonrwa.2010.01.013
  16. Mallet-Paret, J., 10.1023/A:1021889401235, J. Dyn. Differ. Equations 11 (1999), 1-47. (1999) Zbl0927.34049MR1680463DOI10.1023/A:1021889401235
  17. Mallet-Paret, J., 10.1023/A:1021841618074, J. Dyn. Differ. Equations 11 (1999), 49-127. (1999) Zbl0921.34046MR1680459DOI10.1023/A:1021841618074
  18. Weng, P., 10.3934/dcdsb.2009.12.883, Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 883-904. (2009) Zbl1185.34114MR2552078DOI10.3934/dcdsb.2009.12.883
  19. Wu, S.-L., Liu, S.-Y., 10.1080/10236198.2011.645815, J. Difference Equ. Appl. 19 (2013), 384-401. (2013) Zbl1273.34074MR3037281DOI10.1080/10236198.2011.645815
  20. Wu, J., Zou, X., 10.1006/jdeq.1996.3232, J. Differ. Equations 135 (1997), 315-357. (1997) Zbl0877.34046MR1441274DOI10.1006/jdeq.1996.3232
  21. Yu, Z.-X., Yuan, R., Nonlinear stability of wavefronts for a delayed stage-structured population model on a 2-D lattice, Osaka J. Math. 50 (2013), 963-976. (2013) Zbl1287.34061MR3161423
  22. Yu, Z.-X., Zhang, W., Wang, X., 10.1016/j.mcm.2013.06.009, Math. Comput. Modelling 58 (2013), 1510-1521. (2013) MR3143380DOI10.1016/j.mcm.2013.06.009
  23. Zhao, H.-Q., Asymptotic stability of traveling fronts in delayed reaction-diffusion monostable equations on higher-dimensional lattices, Electron. J. Differ. Equ. 2013 (2013), Article ID 119, 15 pages. (2013) Zbl1288.35095MR3065072
  24. Zhao, H.-Q., Wu, S.-L., 10.1016/j.nonrwa.2010.09.011, Nonlinear Anal., Real World Appl. 12 (2011), 1178-1191. (2011) Zbl1243.34013MR2736300DOI10.1016/j.nonrwa.2010.09.011
  25. Zinner, B., 10.1137/0522066, SIAM J. Math. Anal. 22 (1991), 1016-1020. (1991) Zbl0739.34060MR1112063DOI10.1137/0522066
  26. Zinner, B., 10.1016/0022-0396(92)90142-A, J. Differ. Equations 96 (1992), 1-27. (1992) Zbl0752.34007MR1153307DOI10.1016/0022-0396(92)90142-A
  27. Zinner, B., Harris, G., Hudson, W., 10.1006/jdeq.1993.1082, J. Differ. Equations 105 (1993), 46-62. (1993) Zbl0778.34006MR1237977DOI10.1006/jdeq.1993.1082
  28. Zou, X., Traveling wave fronts in spatially discrete reaction-diffusion equations on higher-dimensional lattices, Electron. J. Differ. Equ. 1997 (1997), 211-222. (1997) Zbl0913.34041MR1672189
  29. Zou, X., Wu, J., Local existence and stability of periodic traveling waves of lattice functional-differential equations, Can. Appl. Math. Q. 6 (1998), 397-418. (1998) Zbl0919.34062MR1668040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.