Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications
Applications of Mathematics (2021)
- Volume: 66, Issue: 4, page 641-656
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHe, Yanli, and Li, Kun. "Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications." Applications of Mathematics 66.4 (2021): 641-656. <http://eudml.org/doc/298167>.
@article{He2021,
abstract = {In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.},
author = {He, Yanli, Li, Kun},
journal = {Applications of Mathematics},
keywords = {higher dimensional lattice; traveling wave solution; delay; upper and lower solutions},
language = {eng},
number = {4},
pages = {641-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications},
url = {http://eudml.org/doc/298167},
volume = {66},
year = {2021},
}
TY - JOUR
AU - He, Yanli
AU - Li, Kun
TI - Traveling wave solutions in a class of higher dimensional lattice differential systems with delays and applications
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 641
EP - 656
AB - In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.
LA - eng
KW - higher dimensional lattice; traveling wave solution; delay; upper and lower solutions
UR - http://eudml.org/doc/298167
ER -
References
top- Cahn, J. W., Mallet-Paret, J., Vleck, E. S. Van, 10.1137/S0036139996312703, SIAM J. Appl. Math. 59 (1999), 455-493. (1999) Zbl0917.34052MR1654427DOI10.1137/S0036139996312703
- Chen, X., Guo, J.-S., 10.1006/jdeq.2001.4153, J. Differ. Equations 184 (2002), 549-569. (2002) Zbl1010.39004MR1929888DOI10.1006/jdeq.2001.4153
- Chen, X., Guo, J.-S., 10.1007/s00208-003-0414-0, Math. Ann. 326 (2003), 123-146. (2003) Zbl1086.34011MR1981615DOI10.1007/s00208-003-0414-0
- Cheng, C.-P., Li, W.-T., Wang, Z.-C., Zheng, S., 10.1142/S0218127416500498, Int. J. Bifurcation Chaos Appl. Sci. Eng. 26 (2016), Article ID 1650049, 13 pages. (2016) Zbl1336.34106MR3482808DOI10.1142/S0218127416500498
- Chow, S.-N., Mallet-Paret, J., Shen, W., 10.1006/jdeq.1998.3478, J. Differ. Equations 149 (1998), 248-291. (1998) Zbl0911.34050MR1646240DOI10.1006/jdeq.1998.3478
- Guo, J.-S., Wu, C.-H., Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system, Osaka J. Math. 45 (2008), 327-346. (2008) Zbl1155.34016MR2441943
- Guo, J.-S., Wu, C.-H., 10.1016/j.jde.2012.01.009, J. Differ. Equations 252 (2012), 4357-4391. (2012) Zbl1251.34018MR2881041DOI10.1016/j.jde.2012.01.009
- Hankerson, D., Zinner, B., 10.1007/BF01053165, J. Dyn. Differ. Equations 5 (1993), 359-373. (1993) Zbl0777.34013MR1223452DOI10.1007/BF01053165
- Huang, J., Lu, G., Ruan, S., 10.1016/j.na.2004.10.020, Nonlinear Anal., Theory Methods Appl., Ser. A 60 (2005), 1331-1350. (2005) Zbl1084.34059MR2112956DOI10.1016/j.na.2004.10.020
- Huang, J., Lu, G., Zou, X., 10.1016/j.jmaa.2004.05.027, J. Math. Anal. Appl. 298 (2004), 538-558. (2004) Zbl1126.34323MR2086974DOI10.1016/j.jmaa.2004.05.027
- Keener, J. P., 10.1137/0147038, SIAM J. Appl. Math. 47 (1987), 556-572. (1987) Zbl0649.34019MR0889639DOI10.1137/0147038
- Li, K., Huang, J., Li, X., He, Y., 10.1080/00036811.2017.1295450, Appl. Anal. 97 (2018), 982-999. (2018) Zbl1400.34125MR3777853DOI10.1080/00036811.2017.1295450
- Li, K., Li, X., 10.1080/10236198.2017.1409222, J. Difference Equ. Appl. 24 (2018), 391-408. (2018) Zbl1425.37050MR3757175DOI10.1080/10236198.2017.1409222
- Li, W.-T., Lin, G., Ruan, S., 10.1088/0951-7715/19/6/003, Nonlinearity 19 (2006), 1253-1273. (2006) Zbl1103.35049MR2229998DOI10.1088/0951-7715/19/6/003
- Lin, G., Li, W.-T., 10.1016/j.nonrwa.2010.01.013, Nonlinear Anal., Real World Appl. 11 (2010), 3666-3679. (2010) Zbl1206.34099MR2683821DOI10.1016/j.nonrwa.2010.01.013
- Mallet-Paret, J., 10.1023/A:1021889401235, J. Dyn. Differ. Equations 11 (1999), 1-47. (1999) Zbl0927.34049MR1680463DOI10.1023/A:1021889401235
- Mallet-Paret, J., 10.1023/A:1021841618074, J. Dyn. Differ. Equations 11 (1999), 49-127. (1999) Zbl0921.34046MR1680459DOI10.1023/A:1021841618074
- Weng, P., 10.3934/dcdsb.2009.12.883, Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 883-904. (2009) Zbl1185.34114MR2552078DOI10.3934/dcdsb.2009.12.883
- Wu, S.-L., Liu, S.-Y., 10.1080/10236198.2011.645815, J. Difference Equ. Appl. 19 (2013), 384-401. (2013) Zbl1273.34074MR3037281DOI10.1080/10236198.2011.645815
- Wu, J., Zou, X., 10.1006/jdeq.1996.3232, J. Differ. Equations 135 (1997), 315-357. (1997) Zbl0877.34046MR1441274DOI10.1006/jdeq.1996.3232
- Yu, Z.-X., Yuan, R., Nonlinear stability of wavefronts for a delayed stage-structured population model on a 2-D lattice, Osaka J. Math. 50 (2013), 963-976. (2013) Zbl1287.34061MR3161423
- Yu, Z.-X., Zhang, W., Wang, X., 10.1016/j.mcm.2013.06.009, Math. Comput. Modelling 58 (2013), 1510-1521. (2013) MR3143380DOI10.1016/j.mcm.2013.06.009
- Zhao, H.-Q., Asymptotic stability of traveling fronts in delayed reaction-diffusion monostable equations on higher-dimensional lattices, Electron. J. Differ. Equ. 2013 (2013), Article ID 119, 15 pages. (2013) Zbl1288.35095MR3065072
- Zhao, H.-Q., Wu, S.-L., 10.1016/j.nonrwa.2010.09.011, Nonlinear Anal., Real World Appl. 12 (2011), 1178-1191. (2011) Zbl1243.34013MR2736300DOI10.1016/j.nonrwa.2010.09.011
- Zinner, B., 10.1137/0522066, SIAM J. Math. Anal. 22 (1991), 1016-1020. (1991) Zbl0739.34060MR1112063DOI10.1137/0522066
- Zinner, B., 10.1016/0022-0396(92)90142-A, J. Differ. Equations 96 (1992), 1-27. (1992) Zbl0752.34007MR1153307DOI10.1016/0022-0396(92)90142-A
- Zinner, B., Harris, G., Hudson, W., 10.1006/jdeq.1993.1082, J. Differ. Equations 105 (1993), 46-62. (1993) Zbl0778.34006MR1237977DOI10.1006/jdeq.1993.1082
- Zou, X., Traveling wave fronts in spatially discrete reaction-diffusion equations on higher-dimensional lattices, Electron. J. Differ. Equ. 1997 (1997), 211-222. (1997) Zbl0913.34041MR1672189
- Zou, X., Wu, J., Local existence and stability of periodic traveling waves of lattice functional-differential equations, Can. Appl. Math. Q. 6 (1998), 397-418. (1998) Zbl0919.34062MR1668040
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.