Stability of certain Engel-like distributions
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 765-784
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBhowmick, Aritra. "Stability of certain Engel-like distributions." Czechoslovak Mathematical Journal 71.3 (2021): 765-784. <http://eudml.org/doc/298185>.
@article{Bhowmick2021,
abstract = {We introduce a higher dimensional analogue of the Engel structure, motivated by the Cartan prolongation of contact manifolds. We study the stability of such structure, generalizing the Gray-type stability results for Engel manifolds. We also derive local normal forms defining such a distribution.},
author = {Bhowmick, Aritra},
journal = {Czechoslovak Mathematical Journal},
keywords = {Engel structure; Cartan prolongation; global stability; nonholonomic distribution; normal form},
language = {eng},
number = {3},
pages = {765-784},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability of certain Engel-like distributions},
url = {http://eudml.org/doc/298185},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Bhowmick, Aritra
TI - Stability of certain Engel-like distributions
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 765
EP - 784
AB - We introduce a higher dimensional analogue of the Engel structure, motivated by the Cartan prolongation of contact manifolds. We study the stability of such structure, generalizing the Gray-type stability results for Engel manifolds. We also derive local normal forms defining such a distribution.
LA - eng
KW - Engel structure; Cartan prolongation; global stability; nonholonomic distribution; normal form
UR - http://eudml.org/doc/298185
ER -
References
top- Adachi, J., 10.1155/S1073792803130735, Int. Math. Res. Not. 49 (2003), 2621-2638. (2003) Zbl1044.58007MR2012520DOI10.1155/S1073792803130735
- Adachi, J., 10.1007/s11856-010-0072-3, Isr. J. Math. 179 (2010), 29-56 9999DOI99999 10.1007/s11856-010-0072-3 . (2010) Zbl1222.58003MR2735034DOI10.1007/s11856-010-0072-3
- Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A., 10.1007/978-1-4613-9714-4, Mathematical Sciences Research Institute Publications 18. Springer, New York (1991). (1991) Zbl0726.58002MR1083148DOI10.1007/978-1-4613-9714-4
- Coddington, E. A., Levinson, N., Theory of Ordinary Differential Equations, McGraw- Hill, New York (1955). (1955) Zbl0064.33002MR0069338
- Golubev, A., 10.1155/S1073792897000342, Int. Math. Res. Not. 1997 (1997), 523-529. (1997) Zbl0893.58007MR1448335DOI10.1155/S1073792897000342
- Milnor, J. W., Stasheff, J. D., 10.1515/9781400881826, Annals of Mathematics Studies 76. Princeton University Press, Princeton (1974). (1974) Zbl0298.57008MR0440554DOI10.1515/9781400881826
- Montgomery, R., 10.1006/jdeq.1993.1056, J. Differ. Equations 103 (1993), 387-393. (1993) Zbl0782.58008MR1221912DOI10.1006/jdeq.1993.1056
- Montgomery, R., 10.1090/trans2/196/07, Northern California Symplectic Geometry Seminar American Mathematical Society Translations: Series 2, Volume 196. American Mathematical Society, Providence (1999), 103-117. (1999) Zbl0961.53043MR1736216DOI10.1090/trans2/196/07
- Montgomery, R., Zhitomirskii, M., 10.1016/S0294-1449(01)00076-2, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001), 459-493. (2001) Zbl1013.58004MR1841129DOI10.1016/S0294-1449(01)00076-2
- Mormul, P., 10.4064/bc65-0-12, Geometric Singularity Theory Banach Center Publications 65. Polish Academy of Sciences, Institute of Mathematics, Warsaw (2004), 157-178. (2004) Zbl1056.58002MR2104345DOI10.4064/bc65-0-12
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.