On the variation of certain fractional part sequences
Michel Balazard; Leila Benferhat; Mihoub Bouderbala
Communications in Mathematics (2021)
- Volume: 29, Issue: 3, page 407-430
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topBalazard, Michel, Benferhat, Leila, and Bouderbala, Mihoub. "On the variation of certain fractional part sequences." Communications in Mathematics 29.3 (2021): 407-430. <http://eudml.org/doc/298187>.
@article{Balazard2021,
abstract = {Let $b>a>0$. We prove the following asymptotic formula \[ \sum \_\{n\geqslant 0\} \big \vert \lbrace x/(n+a)\rbrace -\lbrace x/(n+b)\rbrace \big \vert =\frac\{2\}\{\pi \}\zeta (3/2)\sqrt\{cx\}+O(c^\{2/9\}x^\{4/9\})\,, \]
with $c=b-a$, uniformly for $x \geqslant 40 c^\{-5\}(1+b)^\{27/2\}$.},
author = {Balazard, Michel, Benferhat, Leila, Bouderbala, Mihoub},
journal = {Communications in Mathematics},
keywords = {Fractional part; Elementary methods; van der Corput estimates},
language = {eng},
number = {3},
pages = {407-430},
publisher = {University of Ostrava},
title = {On the variation of certain fractional part sequences},
url = {http://eudml.org/doc/298187},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Balazard, Michel
AU - Benferhat, Leila
AU - Bouderbala, Mihoub
TI - On the variation of certain fractional part sequences
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 407
EP - 430
AB - Let $b>a>0$. We prove the following asymptotic formula \[ \sum _{n\geqslant 0} \big \vert \lbrace x/(n+a)\rbrace -\lbrace x/(n+b)\rbrace \big \vert =\frac{2}{\pi }\zeta (3/2)\sqrt{cx}+O(c^{2/9}x^{4/9})\,, \]
with $c=b-a$, uniformly for $x \geqslant 40 c^{-5}(1+b)^{27/2}$.
LA - eng
KW - Fractional part; Elementary methods; van der Corput estimates
UR - http://eudml.org/doc/298187
ER -
References
top- Balazard, M., Sur la variation totale de la suite des parties fractionnaires des quotients d'un nombre réel positif par les nombres entiers naturels consécutifs, Mosc. J. Comb. Number Theory, 7, 2017, 3-23, (2017) MR3656668
- Corput, J.G. van der, Méthodes d'approximation dans le calcul du nombre des points ŕ coordonnées entičres, Enseign. Math., 23, 1923, 5-29, (1923)
- Corput, J.G. van der, 10.1007/BF01455979, Math. Ann., 89, 1923, 215-254, (1923) DOI10.1007/BF01455979
- Corput, J.G. van der, 10.1007/BF01504346, Math. Z., 17, 1923, 250-259, (1923) DOI10.1007/BF01504346
- Wintner, A., 10.1215/S0012-7094-46-01319-1, Duke Math. J., 13, 1946, 185-193, (1946) DOI10.1215/S0012-7094-46-01319-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.