On the variation of certain fractional part sequences

Michel Balazard; Leila Benferhat; Mihoub Bouderbala

Communications in Mathematics (2021)

  • Volume: 29, Issue: 3, page 407-430
  • ISSN: 1804-1388

Abstract

top
Let b > a > 0 . We prove the following asymptotic formula n 0 | { x / ( n + a ) } - { x / ( n + b ) } | = 2 π ζ ( 3 / 2 ) c x + O ( c 2 / 9 x 4 / 9 ) , with c = b - a , uniformly for x 40 c - 5 ( 1 + b ) 27 / 2 .

How to cite

top

Balazard, Michel, Benferhat, Leila, and Bouderbala, Mihoub. "On the variation of certain fractional part sequences." Communications in Mathematics 29.3 (2021): 407-430. <http://eudml.org/doc/298187>.

@article{Balazard2021,
abstract = {Let $b>a>0$. We prove the following asymptotic formula \[ \sum \_\{n\geqslant 0\} \big \vert \lbrace x/(n+a)\rbrace -\lbrace x/(n+b)\rbrace \big \vert =\frac\{2\}\{\pi \}\zeta (3/2)\sqrt\{cx\}+O(c^\{2/9\}x^\{4/9\})\,, \] with $c=b-a$, uniformly for $x \geqslant 40 c^\{-5\}(1+b)^\{27/2\}$.},
author = {Balazard, Michel, Benferhat, Leila, Bouderbala, Mihoub},
journal = {Communications in Mathematics},
keywords = {Fractional part; Elementary methods; van der Corput estimates},
language = {eng},
number = {3},
pages = {407-430},
publisher = {University of Ostrava},
title = {On the variation of certain fractional part sequences},
url = {http://eudml.org/doc/298187},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Balazard, Michel
AU - Benferhat, Leila
AU - Bouderbala, Mihoub
TI - On the variation of certain fractional part sequences
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 407
EP - 430
AB - Let $b>a>0$. We prove the following asymptotic formula \[ \sum _{n\geqslant 0} \big \vert \lbrace x/(n+a)\rbrace -\lbrace x/(n+b)\rbrace \big \vert =\frac{2}{\pi }\zeta (3/2)\sqrt{cx}+O(c^{2/9}x^{4/9})\,, \] with $c=b-a$, uniformly for $x \geqslant 40 c^{-5}(1+b)^{27/2}$.
LA - eng
KW - Fractional part; Elementary methods; van der Corput estimates
UR - http://eudml.org/doc/298187
ER -

References

top
  1. Balazard, M., Sur la variation totale de la suite des parties fractionnaires des quotients d'un nombre réel positif par les nombres entiers naturels consécutifs, Mosc. J. Comb. Number Theory, 7, 2017, 3-23, (2017) MR3656668
  2. Corput, J.G. van der, Méthodes d'approximation dans le calcul du nombre des points ŕ coordonnées entičres, Enseign. Math., 23, 1923, 5-29, (1923) 
  3. Corput, J.G. van der, 10.1007/BF01455979, Math. Ann., 89, 1923, 215-254, (1923) DOI10.1007/BF01455979
  4. Corput, J.G. van der, 10.1007/BF01504346, Math. Z., 17, 1923, 250-259, (1923) DOI10.1007/BF01504346
  5. Wintner, A., 10.1215/S0012-7094-46-01319-1, Duke Math. J., 13, 1946, 185-193, (1946) DOI10.1215/S0012-7094-46-01319-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.